首页> 外文期刊>Computers & operations research >New formulations for the hop-constrained minimum spanning tree problem via Sherali and Driscoll's tightened Miller-Tucker-Zemlin constraints
【24h】

New formulations for the hop-constrained minimum spanning tree problem via Sherali and Driscoll's tightened Miller-Tucker-Zemlin constraints

机译:通过Sherali和Driscoll严格的Miller-Tucker-Zemlin约束来解决跃点约束最小生成树问题的新公式

获取原文
获取原文并翻译 | 示例

摘要

Given an undirected network with positive edge costs and a natural number p, the hop-constrained minimum spanning tree problem (HMST) is the problem of finding a spanning tree with minimum total cost such that each path starting from a specified root node has no more than p hops (edges). In this paper, the new models based on the Miller-Tucker-Zemlin (MTZ) subtour elimination constraints are developed and computational results together with comparisons against MTZ-based, flow-based, and hop-indexed formulations are reported. The first model is obtained by adapting the MTZ-based Asymmetric Traveling Salesman Problem formulation of Sherali and Driscoll @@[18] and the other two models are obtained by combining topology-enforcing and MTZ-related constraints offered by Akgiin and Tansel (submitted for publication) @@[20] for HMST with the first model appropriately. Computational studies show that the best LP bounds of the MTZ-based models in the literature are improved by the proposed models. The best solution times of the MTZ-based models are not improved for optimally solved instances. However, the results for the harder, large-size instances imply that the proposed models are likely to produce better solution times. The proposed models do not dominate the flow-based and hop-indexed formulations with respect to LP bounds. However, good feasible solutions can be obtained in a reasonable amount of time for problems for which even the LP relaxations of the flow-based and hop-indexed formulations can be solved in about 2 days.
机译:给定具有正边缘成本和自然数p的无向网络,跳受限最小生成树问题(HMST)是寻找总成本最小的生成树的问题,这样从指定根节点开始的每条路径都不再超过p跳(边缘)。在本文中,开发了基于Miller-Tucker-Zemlin(MTZ)子行程消除约束的新模型,并报告了计算结果以及与基于MTZ,基于流量和跃点索引的公式的比较。第一个模型是通过改编Sherali和Driscoll @@ [18]的基于MTZ的非对称旅行推销员问题公式而获得的,而其他两个模型是通过结合Akgiin和Tansel提供的拓扑执行和MTZ相关约束条件而获得的。 HMST的@@ [20]与第一个模型相对应。计算研究表明,文献中基于MTZ的模型的最佳LP边界得到了改进。对于最佳求解实例,基于MTZ的模型的最佳求解时间并未得到改善。但是,对于较困难的大型实例的结果表明,建议的模型可能会产生更好的求解时间。相对于LP边界,所提出的模型并不能控制基于流量和跃点索引的公式。但是,对于问题,甚至可以在大约2天之内解决基于流量和跃点索引的配方的LP松弛问题,就可以在合理的时间内获得良好可行的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号