首页> 外文期刊>Computers & operations research >Solving the multidimensional knapsack problems with generalized upper bound constraints by the adaptive memory projection method
【24h】

Solving the multidimensional knapsack problems with generalized upper bound constraints by the adaptive memory projection method

机译:用自适应记忆投影法求解具有广义上限约束的多维背包问题

获取原文
获取原文并翻译 | 示例

摘要

An adaptive memory projection (referred as AMP) method is developed for multidimensional knapsack problems (referred as the MKP) with generalized upper bound constraints. All the variables are divided into several generalized upper bound (referred as GUB) sets and at most one variable can be chosen from each of the GUB sets. The MKP with GUBs (referred as the GUBMKP) can be applied to many real world problems, such as capital budgeting, resource allocation, cargo loading, and project selection. Due to the complexity of the GUBMKP, good metaheuristics are sought to tackle this problem. The AMP method keeps track of components of good solutions during the search and creates provisional solution by combining components of better solutions. The projection method, which can free the selected variables while fixing the others, is very useful for metaheuristics, especially when tackling large-scale combinatorial optimization. In this paper, the AMP method is implemented by iteratively using critical event tabu search as a search routine, and CPLEX in the referent optimization stage. Variables that are strongly determined, consistent, or attractive, are identified in the search process. Selected variables from this pool are fed into CPLEX as a small subproblem. In addition to the diversification effect within critical event tabu search, the pseudo-cut inequalities and an adjusted frequency penalty scalar are also applied to increase opportunities of exploring new regions. This study conducts a comprehensive sensitivity analysis on the parameters and strategies used in the proposed AMP method. The computational results show several variants of the AMP method outperforms the tight oscillation method in the literature of GUBMKP. On average, consistent variables tend to perform best as a pure strategy. A pure strategy equipped with local search can lead into even better results. Last but not least, testing different types of variables in the referent optimization stage before selecting just one of the pure strategies is found to be very helpful.
机译:针对具有广义上限约束的多维背包问题(称为MKP),开发了一种自适应内存投影(称为AMP)方法。所有变量都被分为几个广义上界(称为GUB)集,并且最多可以从每个GUB集中选择一个变量。具有GUB的MKP(称为GUBMKP)可以应用于许多现实世界中的问题,例如资本预算,资源分配,货物装载和项目选择。由于GUBMKP的复杂性,寻求良好的元启发法来解决此问题。 AMP方法跟踪搜索过程中好的解决方案的组成部分,并通过组合更好解决方案的组成部分来创建临时解决方案。投影方法可以释放选定的变量,同时固定其他变量,这对元启发法非常有用,尤其是在处理大规模组合优化时。在本文中,AMP方法是通过将关键事件禁忌搜索作为搜索例程并在参考优化阶段使用CPLEX来迭代实现的。在搜索过程中会确定强烈确定,一致或有吸引力的变量。从该池中选择的变量作为一个小子问题被馈送到CPLEX中。除了关键事件禁忌搜索内的多样化效应外,伪剪切不等式和调整后的频率罚分标量也可用于增加探索新区域的机会。这项研究对建议的AMP方法中使用的参数和策略进行了全面的敏感性分析。计算结果表明,在GUBMKP文献中,AMP方法的几种变型优于紧振荡法。平均而言,一致变量作为纯策略往往表现最佳。配备本地搜索功能的纯策略可以带来更好的结果。最后但并非最不重要的一点是,在仅选择一种纯策略之前,在参考优化阶段测试不同类型的变量非常有帮助。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号