首页> 外文期刊>Computers & operations research >An operator allocation optimization model for balancing control of the hybrid assembly lines using Pareto utility discrete differential evolution algorithm
【24h】

An operator allocation optimization model for balancing control of the hybrid assembly lines using Pareto utility discrete differential evolution algorithm

机译:使用帕累托效用离散差分进化算法的混合装配线平衡控制的算子分配优化模型

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the operator allocation problems (OAP) with jobs sharing and operator revisiting for balance control of a complicated hybrid assembly line which appears in the apparel sewing manufacturing system. Multiple objectives and constraints for the problem are formulated. The utility function is employed to deal with the difficulty of combining several conflicting and incommensurable objectives into one overall measure. An optimization model combining the Pareto utility discrete differential evolution (PUDDE) algorithm and the embedded discrete event simulation (DES) model is proposed to solve the OAPs. The PUDDE algorithm is an improved discrete differential evolution approach used with the Pareto utility selection strategy, which extends the real-value differential evolution to handle the discrete-value vector by introducing two modified operators, namely the subtraction and addition operators. During the optimization process, the embedded DES model is used to evaluate the performance objectives by analyzing the dynamic behaviors of the hybrid assembly lines, which tackles the problem of having no closed-form mathematical expressions for the evaluation of performance objectives owing to the existence of jobs sharing and operator revisiting. Extensive experiments are conducted to validate the proposed optimization model. The experimental results demonstrate that the proposed PUDDE-based optimization model can effectively solve the OAPs for the hybrid assembly lines with the consideration of jobs sharing and operator revisiting. It was also found that the proposed PUDDE algorithm evidently outperforms the general differential evolution algorithm. Compared with the collected industrial results, the solution generated by the proposed optimization model has much better performance objectives for the hybrid assembly lines.
机译:本文研究了作业分配问题(OAP),其中包括工作共享和重新访问操作员,以控制出现在服装缝纫制造系统中的复杂混合装配线的平衡控制。针对该问题制定了多个目标和约束条件。使用效用函数来解决将几个相互矛盾且难以估量的目标合并为一项整体措施的困难。提出了一种结合帕累托效用离散差分进化算法和嵌入式离散事件仿真模型的优化模型,以解决OAP问题。 PUDDE算法是一种改进的离散微分进化方法,与Pareto实用程序选择策略一起使用,该方法通过引入两个修改的运算符(即减法和加法运算符)扩展了实值微分进化,以处理离散值矢量。在优化过程中,使用嵌入式DES模型通过分析混合装配线的动态行为来评估性能目标,解决了由于存在混合动力而没有封闭形式的数学表达式来评估性能目标的问题。作业共享和操作员重访。进行了广泛的实验以验证所提出的优化模型。实验结果表明,所提出的基于PUDDE的优化模型可以有效地解决混合装配线的OAP问题,并考虑到工作共享和操作员重新访问。还发现,所提出的PUDDE算法明显优于一般的差分进化算法。与收集的工业结果相比,所提出的优化模型生成的解决方案对于混合装配线具有更好的性能目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号