首页> 外文期刊>Computers & operations research >Optimized task scheduling and resource allocation on cloud computing environment using improved differential evolution algorithm
【24h】

Optimized task scheduling and resource allocation on cloud computing environment using improved differential evolution algorithm

机译:使用改进的差分进化算法在云计算环境中优化任务调度和资源分配

获取原文
获取原文并翻译 | 示例

摘要

Purpose: The objective of this study is to optimize task scheduling and resource allocation using an improved differential evolution algorithm (IDEA) based on the proposed cost and time models on cloud computing environment. Methods: The proposed IDEA combines the Taguchi method and a differential evolution algorithm (DEA). The DEA has a powerful global exploration capability on macro-space and uses fewer control parameters. The systematic reasoning ability of the Taguchi method is used to exploit the better individuals on microspace to be potential offspring. Therefore, the proposed IDEA is well enhanced and balanced on exploration and exploitation. The proposed cost model includes the processing and receiving cost. In addition, the time model incorporates receiving, processing, and waiting time. The multi-objective optimization approach, which is the non-dominated sorting technique, not with normalized single-objective method, is applied to find the Pareto front of total cost and makespan. Results: In the five-task five-resource problem, the mean coverage ratios C(IDEA, DEA) of 0.368 and C (IDEA, NSGA-Ⅱ) of 0.3 are superior to the ratios C(DEA, IDEA) of 0.249 and C(NSGA-Ⅱ, IDEA) of 0.288, respectively. In the ten-task ten-resource problem, the mean coverage ratios C(IDEA, DEA) of 0.506 and C (IDEA, NSGA-Ⅱ) of 0.701 are superior to the ratios C(DEA, IDEA) of 0.286 and C(NSGA-Ⅱ, IDEA) of 0.052, respectively. Wilcoxon matched-pairs signed-rank test confirms there is a significant difference between IDEA and the other methods. In summary, the above experimental results confirm that the IDEA outperforms both the DEA and NSGA-Ⅱ in finding the better Pareto-optimal solutions. Conclusions: In the study, the IDEA shows its effectiveness to optimize task scheduling and resource allocation compared with both the DEA and the NSGA-Ⅱ. Moreover, for decision makers, the Gantt charts of task scheduling in terms of having smaller makespan, cost, and both can be selected to make their decision when conflicting objectives are present.
机译:目的:本研究的目的是基于云计算环境中建议的成本和时间模型,使用改进的差分进化算法(IDEA)优化任务调度和资源分配。方法:提出的IDEA结合了Taguchi方法和差分进化算法(DEA)。 DEA在宏空间上具有强大的全局探索能力,并且使用的控制参数更少。 Taguchi方法的系统推理能力被用来开发微空间中更好的个体作为潜在的后代。因此,提议的IDEA在勘探和开发上得到了很好的增强和平衡。提议的成本模型包括处理和接收成本。另外,时间模型包含接收,处理和等待时间。多目标优化方法是一种非支配的排序技术,而不是归一化的单目标方法,可用于找到总成本和制造期的帕累托前沿。结果:在五任务五资源问题中,平均覆盖率C(IDEA,DEA)为0.368,而C(IDEA,NSGA-Ⅱ)的均值优于0.249和C (NSGA-Ⅱ,IDEA)分别为0.288。在十任务十资源问题中,平均覆盖率C(IDEA,DEA)为0.506,C(IDEA,NSGA-Ⅱ)为0.701,优于C(DEA,IDEA)为0.286和C(NSGA) -Ⅱ,IDEA)分别为0.052。 Wilcoxon配对对的符号秩检验证明,IDEA与其他方法之间存在显着差异。总之,以上实验结果证实,IDEA在寻找更好的帕累托最优解方面优于DEA和NSGA-Ⅱ。结论:与DEA和NSGA-Ⅱ相比,IDEA显示了其优化任务调度和资源分配的有效性。此外,对于决策者而言,当存在冲突的目标时,可以选择具有较小制造时间,成本和两者的任务调度的甘特图来做出决策。

著录项

  • 来源
    《Computers & operations research》 |2013年第12期|3045-3055|共11页
  • 作者单位

    Department of Computer Science, National Pingtung University of Education, 4-18 Min-Sheng Road, Pingtung 900, Taiwan, ROC;

    Department of Computer Science, National Pingtung University of Education, 4-18 Min-Sheng Road, Pingtung 900, Taiwan, ROC;

    Institute of System Information and Control, National Kaohsiung First University of Science and Technology, 1 University Road, Yenchao. Kaohsiung 824, Taiwan, ROC Department of Electrical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 807, Taiwan, ROC Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan, ROC;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cloud computing; Differential evolution algorithm; Task scheduling; Cost and time models; Multi-objective approach;

    机译:云计算;差分进化算法;任务调度;成本和时间模型;多目标方法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号