首页> 外文期刊>Computers & operations research >Recovery-to-optimality: A new two-stage approach to robustness with an application to aperiodic timetabling
【24h】

Recovery-to-optimality: A new two-stage approach to robustness with an application to aperiodic timetabling

机译:恢复为最佳状态:一种新的两阶段健壮性方法,适用于非周期性时间表

获取原文
获取原文并翻译 | 示例

摘要

The goal of robust optimization is to hedge against uncertainties: in most real-world applications, the specific problem instance depends on uncertain data and is hence not known beforehand. In this work we introduce a new two-stage approach called recovery-to-optimality to handle uncertain optimization problems. Motivated by two-stage stochastic programming and in a similar spirit as the well-known approaches of adjustable robustness or recovery robustness, our new concept allows us to adapt a solution when the realized input scenario is revealed. Using a metric in the solution space measuring the recovery costs, we can evaluate the worst-case costs or the average costs of any solution. Our new concept recovery-to-optimality asks for a solution which can be recovered to an optimal solution with low recovery costs. We set up the robust counterpart (RecOpt) for this concept. However, our intention is to provide a practical approach that can easily be used to generate robust solutions for any application. Building on solution algorithms for the deterministic problem, and on algorithms from location theory, we propose a generic procedure which is able to generate solutions with low recovery costs. We point out properties of these solutions and analyze special cases in which the outcome of the procedure coincides with the optimal solutions to (RecOpt). In an experimental study, we apply our approach to linear programs, and to the problem of finding aperiodic train timetables. We compare it to other robustness concepts, and discuss their tradeoffs with respect to multiple evaluation criteria.
机译:健壮优化的目标是对付不确定性:在大多数实际应用中,特定的问题实例取决于不确定的数据,因此事先未知。在这项工作中,我们介绍了一种新的两阶段方法,称为恢复为最佳状态,以处理不确定的优化问题。受两阶段随机编程的推动,并且以与可调健壮性或恢复健壮性的众所周知方法相似的精神,我们的新概念使我们能够在揭示已实现的输入方案时适应解决方案。在解决方案空间中使用度量回收成本的指标,我们可以评估最坏情况的成本或任何解决方案的平均成本。我们的新概念,即“从最佳状态恢复到最佳状态”要求一种可以以低恢复成本将其恢复为最佳解决方案的解决方案。我们为此概念建立了强大的副本(RecOpt)。但是,我们的目的是提供一种实用的方法,可以轻松地为任何应用生成可靠的解决方案。在针对确定性问题的求解算法以及位置理论的算法的基础上,我们提出了一种通用程序,该程序能够以较低的回收成本生成解决方案。我们指出了这些解决方案的性质,并分析了特殊情况,其中过程的结果与(RecOpt)的最佳解决方案相吻合。在一项实验研究中,我们将我们的方法应用于线性程序以及查找非定期列车时刻表的问题。我们将其与其他鲁棒性概念进行比较,并针对多个评估标准讨论它们的权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号