首页> 外文期刊>Computers & operations research >Solving the dynamic traveling salesman problem using a genetic algorithm with trajectory prediction: An application to fish aggregating devices
【24h】

Solving the dynamic traveling salesman problem using a genetic algorithm with trajectory prediction: An application to fish aggregating devices

机译:使用带有轨迹预测的遗传算法解决动态旅行商问题:在鱼聚集设备中的应用

获取原文
获取原文并翻译 | 示例

摘要

The paper addresses the synergies from combining a heuristic method with a predictive technique to solve the Dynamic Traveling Salesman Problem (DTSP). Particularly, we build a genetic algorithm that feeds on Newton's motion equation to show how route optimization can be improved when targets are constantly moving. Our empirical evidence stems from the recovery of fish aggregating devices (FADs) by tuna vessels. Based on historical real data provided by GPS buoys attached to the FADs, we first estimate their trajectories to feed a genetic algorithm that searches for the best route considering their future locations. Our solution, which we name Genetic Algorithm based on Trajectory Prediction (GATP), shows that the distance traveled is significantly shorter than implementing other commonly used methods.
机译:本文探讨了将启发式方法与预测技术相结合以解决动态旅行商问题(DTSP)的协同作用。特别是,我们构建了一种遗传算法,该算法以牛顿运动方程为基础,以显示当目标不断移动时如何改进路线优化。我们的经验证据来自金枪鱼船对鱼类聚集装置(FAD)的回收。根据附加在FAD上的GPS浮标提供的历史真实数据,我们首先估算它们的轨迹,以提供一种遗传算法,从而考虑其未来位置寻找最佳路线。我们的解决方案名为“基于轨迹预测(GATP)的遗传算法”,它表明行进的距离比实现其他常用方法要短得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号