首页> 外文期刊>Computers & operations research >Mathematical programming-based approaches for multi-facility glass container production planning
【24h】

Mathematical programming-based approaches for multi-facility glass container production planning

机译:基于数学编程的多设施玻璃容器生产计划方法

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a mathematical model (together with a relaxed version) and solution approaches for the multi-facility glass container production planning (MF-GCPP) problem. The glass container industry covers the production of glass packaging (bottle and jars), where a glass paste is continuously distributed to a set of parallel molding machines that shape the finished products. Each facility has a set of furnaces where the glass paste is produced in order to meet the demand. Furthermore, final product transfers between facilities are allowed to face demand. The objectives include meeting demand, minimizing inventory investment and transportation costs, as well as maximizing the utilization of the production facilities. A novel mixed integer programming formulation is introduced for MF-GCPP and solution approaches applying heuristics and meta-heuristics based on mathematical programming are developed. A multi-population genetic algorithm defines for each individual the partitions of the search space to be optimized by the MIP solver. A variant of the fix-and-optimize improvement heuristic is also introduced. The computational tests are carried on instances generated from real-world data provided by a glass container company. The results show that the proposed methods return competitive results for smaller instances, comparing to an exact solver method. In larger instances, the proposed methods are able to return high quality solutions. (C) 2016 Elsevier Ltd. All rights reserved.
机译:本文介绍了一个数学模型(以及一个简化版本)和用于多设施玻璃容器生产计划(MF-GCPP)问题的解决方法。玻璃容器行业涵盖玻璃包装(瓶子和罐子)的生产,其中玻璃浆料被连续地分配到一组用于成型成品的平行成型机上。每个工厂都有一套熔炉,用于生产玻璃糊以满足需求。此外,工厂之间的最终产品转移可以满足需求。目标包括满足需求,最小化库存投资和运输成本以及最大程度地利用生产设施。介绍了一种用于MF-GCPP的新型混合整数规划公式,并提出了基于数学规划的启发式和元启发式求解方法。人口众多的遗传算法为每个个体定义要由MIP求解器优化的搜索空间分区。还介绍了固定和优化改进启发式的变体。计算测试是在根据玻璃容器公司提供的真实数据生成的实例上进行的。结果表明,与精确求解器方法相比,所提出的方法在较小的情况下返回竞争结果。在较大的情况下,提出的方法能够返回高质量的解决方案。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号