首页> 外文期刊>Computers & operations research >Column generation strategies and decomposition approaches for the two-stage stochastic multiple knapsack problem
【24h】

Column generation strategies and decomposition approaches for the two-stage stochastic multiple knapsack problem

机译:两阶段随机多背包问题的列生成策略和分解方法

获取原文
获取原文并翻译 | 示例

摘要

Many problems can be formulated by variants of knapsack problems. However, such models are deterministic, while many real-life problems include some kind of uncertainty. Therefore, it is worthwhile to develop and test knapsack models that can deal with disturbances. In this paper, we consider a two stage stochastic multiple knapsack problem. Here, we have a multiple knapsack problem together with a set of possible disturbances. For each disturbance, or scenario, we know its probability of occurrence and the resulting reduction in the sizes of the knapsacks. For each knapsack we decide in the first stage which items we take with us, and when a disturbance occurs we are allowed to remove items from the corresponding knapsack. Our goal is to find a solution where the expected revenue is maximized. We use branch-and-price to solve this problem. We present and compare two solution approaches: the separate recovery decomposition (SRD) and the combined recovery decomposition (CRD). We prove that the LP-relaxation of the CRD is stronger than the LP-relaxation of the SRD. Furthermore, we investigate numerous column generation strategies and methods to create additional columns outside the pricing problem. These strategies reduce the solution time significantly. To the best of our knowledge, there is no other paper that investigates such strategies so thoroughly. (C) 2017 Elsevier Ltd. All rights reserved.
机译:背包问题的变体可以提出许多问题。但是,此类模型是确定性的,而许多现实生活中的问题都包含某种不确定性。因此,值得开发和测试可以处理干扰的背包模型。在本文中,我们考虑了两阶段随机多重背包问题。在这里,我们有多个背包问题以及一系列可能的干扰。对于每种干扰或情况,我们都知道其发生的可能性以及背包尺寸的减小。对于每个背包,我们都在第一阶段决定随身携带哪些物品,并且当发生干扰时,我们可以从相应的背包中取出物品。我们的目标是找到一个可以使预期收入最大化的解决方案。我们使用分支价格来解决这个问题。我们提出并比较了两种解决方法:单独的回收分解(SRD)和联合的回收分解(CRD)。我们证明CRD的LP松弛比SRD的LP松弛更强。此外,我们研究了许多列生成策略和方法,以在定价问题之外创建其他列。这些策略大大减少了解决时间。据我们所知,没有其他论文对这种策略进行过如此彻底的研究。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号