首页> 外文期刊>Computers & operations research >Perturbed Decomposition Algorithm applied to the multi-objective Traveling Salesman Problem
【24h】

Perturbed Decomposition Algorithm applied to the multi-objective Traveling Salesman Problem

机译:摄动分解算法在多目标旅行商问题中的应用

获取原文
获取原文并翻译 | 示例

摘要

Dealing with multi-objective combinatorial optimization, this article proposes a new multi-objective set based meta-heuristic named Perturbed Decomposition Algorithm (PDA). Combining ideas from decomposition methods, local search and data perturbation, PDA provides a 2-phase modular framework for finding an approximation of the Pareto front. The first phase decomposes the search into a number of linearly aggregated problems of the original multi-objective problem. The second phase conducts an iterative process: aggregated problems are first perturbed then selected and optimized by an efficient single-objective local search solver. Resulting solutions will serve as a starting point of a multi-objective local search procedure, called Pareto Local Search. After presenting a literature review of meta-heuristics on the multi-objective symmetric Traveling Salesman Problem (TSP), we conduct experiments on several instances of the bi-objective and tri-objective TSP. The experiments show that our proposed algorithm outperforms the best current methods on this problem. (C) 2016 Elsevier Ltd. All rights reserved.
机译:针对多目标组合优化问题,本文提出了一种新的基于多目标集的元启发式算法,称为扰动分解算法(PDA)。 PDA结合了分解方法,本地搜索和数据扰动的思想,提供了一个两阶段的模块化框架,用于查找帕累托前沿的近似值。第一阶段将搜索分解为多个原始多目标问题的线性汇总问题。第二阶段进行一个迭代过程:首先对聚集的问题进行扰动,然后由高效的单目标本地搜索求解器进行选择和优化。所得的解决方案将用作称为Pareto Local Search的多目标本地搜索过程的起点。在提出了关于多目标对称旅行商问题(TSP)的元启发式方法的文献综述之后,我们对双目标和三目标TSP的几种实例进行了实验。实验表明,在该问题上,我们提出的算法优于目前最好的方法。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号