首页> 外文期刊>Computers & operations research >Optimisation of transportation service network using kappa-node large neighbourhood search
【24h】

Optimisation of transportation service network using kappa-node large neighbourhood search

机译:基于kappa节点大邻域搜索的运输服务网络优化

获取原文
获取原文并翻译 | 示例

摘要

The Service Network Design Problem (SNDP) is generally considered as a fundamental problem in transportation logistics and involves the determination of an efficient transportation network and corresponding schedules. The problem is extremely challenging due to the complexity of the constraints and the scale of real-world applications. Therefore, efficient solution methods for this problem are one of the most important research issues in this field. However, current research has mainly focused on various sophisticated high-level search strategies in the form of different local search metaheuristics and their hybrids. Little attention has been paid to novel neighbourhood structures which also play a crucial role in the performance of the algorithm. In this research, we propose a new efficient neighbourhood structure that uses the SNDP constraints to its advantage and more importantly appears to have better reach ability than the current ones. The effectiveness of this new neighbourhood is evaluated in a basic Tabu Search (TS) metaheuristic and a basic Guided Local Search (GLS) method. Experimental results based on a set of well-known benchmark instances show that the new neighbourhood performs better than the previous arc-flipping neighbourhood. The performance of the TS metaheuristic based on the proposed neighbourhood is further enhanced through fast neighbourhood search heuristics and hybridisation with other approaches. (C) 2017 The Author(s). Published by Elsevier Ltd.
机译:服务网络设计问题(SNDP)通常被视为运输物流中的基本问题,涉及确定有效的运输网络和相应的时间表。由于约束的复杂性和实际应用的规模,该问题极具挑战性。因此,针对该问题的有效解决方法是该领域中最重要的研究问题之一。但是,当前的研究主要集中在各种复杂的高级搜索策略上,这些策略以不同的本地搜索元启发式及其混合形式出现。很少有人关注新颖的邻域结构,它们在算法的性能中也起着至关重要的作用。在这项研究中,我们提出了一种新的有效邻域结构,该结构利用了SNDP约束的优势,而且更重要的是,它具有比当前更好的到达能力。在基本的禁忌搜索(TS)元启发式方法和基本的指导性局部搜索(GLS)方法中评估了这个新邻居的有效性。基于一组著名基准实例的实验结果表明,新邻域的性能比以前的弧翻转邻域更好。通过快速邻域搜索启发式算法以及与其他方法的混合,基于拟议邻域的TS元启发式算法的性能得到了进一步增强。 (C)2017作者。由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号