首页> 外文期刊>Computers & mathematics with applications >A refined shifted block inverse-free Krylov subspace method for symmetric generalized eigenvalue problems
【24h】

A refined shifted block inverse-free Krylov subspace method for symmetric generalized eigenvalue problems

机译:对称广义特征值问题的精细移位块无逆Krylov子空间方法

获取原文
获取原文并翻译 | 示例

摘要

For computing the p smallest eigenvalues and their corresponding eigenvectors of symmetric generalized eigenproblems simultaneously, Quillen and Ye have introduced a block inverse-free preconditioned Krylov subspace method (Quillen and Ye, 2010) [ 14]. To accelerate convergence and compute interior eigenpairs, in this paper we present a refined shifted block inverse-free Krylov subspace algorithm based on the block Arnoldi process that generates a B-orthogonality basis of the matrix Krylov subspace. It is proved that this algorithm can guarantee the convergence if the corresponding Ritz values converge. Numerical experiments show that the refined algorithm is more efficient than the original approach.
机译:为了同时计算对称广义特征问题的p个最小特征值和它们对应的特征向量,Quillen和Ye引入了无块逆无条件Krylov子空间方法(Quillen和Ye,2010)[14]。为了加速收敛并计算内部特征对,在本文中,我们提出了一种基于块Arnoldi过程的改进的移位块无逆Krylov子空间算法,该算法生成矩阵Krylov子空间的B正交基础。证明了如果相应的Ritz值收敛,该算法可以保证收敛。数值实验表明,改进算法比原始算法更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号