首页> 外文期刊>Computers & mathematics with applications >Quartic Gaussian and Inverse-Quartic Gaussian radial basis functions: The importance of a nonnegative Fourier transform
【24h】

Quartic Gaussian and Inverse-Quartic Gaussian radial basis functions: The importance of a nonnegative Fourier transform

机译:四次高斯和反四次高斯径向基函数:非负傅立叶变换的重要性

获取原文
获取原文并翻译 | 示例

摘要

We catalogue the numerical properties of approximations using two novel types of radial basis functions ?(r). The QG species is a basis of exponentials of quartic argument: f(x) ≈ f~(RBF)(x; a, h) = ∑_(j=1)~N a_j exp(-[α/h]~4(x - x_j)~4) where the x_j are the RBF centers and also the interpolation points. We show that Quartic Gaussian RBFs fail at many discrete values of the shape parameter α. We show through a detailed analysis that these singularities are directly related to zeros of Q(k), the Fourier Transform of exp(-x~4). If we reverse the roles and take Q(x) as the RBF, all difficulties disappear because these IQG RBFs have a Fourier transform which is nonnegative for all real k. We explain that although the Quartic-Gaussian exp(-x~4) is positive definite in the physics/dynamical systems sense of being zero-free and nonnegative, it lacks the crucial property of being positive definition in the RBF/analysis sense.
机译:我们使用两种新型的径向基函数?(r)对近似值的数值性质进行分类。 QG种类是四次论证指数的基础:f(x)≈f〜(RBF)(x; a,h)= ∑_(j = 1)〜N a_j exp(-[α/ h]〜4 (x-x_j)〜4)其中,x_j是RBF中心,也是插值点。我们显示四次高斯RBF在形状参数α的许多离散值处失效。我们通过详细的分析表明,这些奇点与Q(k)的零(exp(-x〜4)的傅立叶变换)直接相关。如果我们颠倒角色并将Q(x)作为RBF,则所有困难都将消失,因为这些IQG RBF具有傅立叶变换,对于所有实k都是非负的。我们解释说,尽管从物理/动力学系统的意义来看,四次高斯exp(-x〜4)是正定的,并且是零无负的,但在RBF /分析意义上却缺乏作为正定义的关键性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号