首页> 外文期刊>Computers & mathematics with applications >A solution of the parabolized Navier-Stokes stability model in discrete space by two-directional differential quadrature and application to swirl intense flows
【24h】

A solution of the parabolized Navier-Stokes stability model in discrete space by two-directional differential quadrature and application to swirl intense flows

机译:双向微分方程求解离散空间中抛物型Navier-Stokes稳定性模型的求解及其在强旋流中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose a two-directional differential quadrature discretization of the parabolized Navier-Stokes differential system, which models the hydrodynamic instability of non-parallel swirling flows. A specific operational differentiation matrix was derived based on the properties of the orthogonal base. Numerical experiments comparing the new approach with the standard collocation methods were also carried out for two models: the trailing vortex model and a laboratory controlled swirl intense flow model. Numerical simulations are included that show good robustness properties of the proposed method. The method proposed in this paper offers two major advantages: affords an extended analysis of complex swirling flow that captures the streamwise development and the upstream extent of the instability and provides a reduced order model of the Tollmien-Schlichting modes used for the global stability analysis. The computational storage is significantly decreased compared with the related application of linear radial collocation approach.
机译:在本文中,我们提出了抛物型Navier-Stokes微分系统的双向微分正交离散化,该模型对非平行旋流的流体动力学不稳定性进行建模。基于正交基的性质,导出了一个特定的运算微分矩阵。还针对两种模型进行了将该新方法与标准配置方法进行比较的数值实验:尾涡模型和实验室控制的旋流强烈流动模型。数值模拟包括在内,显示了所提出方法的良好鲁棒性。本文提出的方法具有两个主要优点:对复杂的旋流进行了扩展分析,捕获了不稳定性的沿流发展和上游趋势,并提供了用于全局稳定性分析的Tollmien-Schlichting模式的降阶模型。与线性径向配置方法的相关应用相比,计算存储量显着减少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号