首页> 外文期刊>Computers & mathematics with applications >A meshless RBF method for computing a numerical solution of unsteady Burgers'-type equations
【24h】

A meshless RBF method for computing a numerical solution of unsteady Burgers'-type equations

机译:计算非定常Burgers型方程数值解的无网格RBF方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we discuss a meshless method for the computation of a numerical solution of unsteady coupled Burgers'-type equations which are, in the most general case, nonlinear partial differential equations. Our approach is based on the interpolation of the solution by radial basis functions (RBFs) and is independent of the geometry of the domain. The existence and unicity of such of an interpolant will be established by the mean of linear algebra arguments. This spatial discretization transforms the initial problem into a system of ordinary differential equations (ODEs). We give a simple formulation of implicit Runge-Kutta (IRK) schemes that can be used to numerically solve this system of ODEs. The main difficulty in the implementation of an IRK method lies in the fact that it leads to a potentially large linear or nonlinear system that has to be solved at each time step. A matrix-GMRES approach, coupled with a Newton based linearization technique in the nonlinear case, will be used to numerically solve these systems. Some numerical examples will be provided to illustrate the performance of our approach.
机译:在本文中,我们讨论了一种非网格方法,用于计算非定常耦合的Burgers型方程的数值解,该方程通常是非线性偏微分方程。我们的方法基于径向基函数(RBF)对解的插值,并且与域的几何形状无关。此类插值的存在和唯一性将通过线性代数参数的平均值来确定。这种空间离散化将初始问题转换为常微分方程(ODE)系统。我们给出了隐式Runge-Kutta(IRK)方案的简单公式,该方案可用于数值求解该ODE系统。实施IRK方法的主要困难在于,它导致潜在的大型线性或非线性系统,必须在每个时间步骤中对其进行求解。在非线性情况下,矩阵-GMRES方法与基于牛顿的线性化技术相结合,将用于数值求解这些系统。将提供一些数值示例来说明我们的方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号