首页> 外文期刊>Computers & mathematics with applications >Studying absolute stability properties of the Richardson Extrapolation combined with explicit Runge-Kutta methods
【24h】

Studying absolute stability properties of the Richardson Extrapolation combined with explicit Runge-Kutta methods

机译:结合显式Runge-Kutta方法研究Richardson外推法的绝对稳定性

获取原文
获取原文并翻译 | 示例

摘要

Explicit Runge-Kutta methods are considered. It is assumed that the number of stages m,m = 1, 2,3,4, is equal to the order p of the selected method. The impact of the application of the Richardson Extrapolation on the absolute stability properties is studied. The Richardson Extrapolation was used until now only in an attempt to increase the accuracy of the numerical approximations or in order to keep the computational errors under some prescribed in advance level. Another issue, the absolute stability of the Richardson Extrapolation in connection with several numerical methods, is the major topic of this study. It is shown that not only are the combinations of the Richardson Extrapolation with explicit Runge-Kutta methods more accurate than the underlying numerical methods, but also their absolute stability regions are larger. This means that larger time-stepsizes can be used during the integration when Richardson Extrapolation is used. The validity of the theoretical results is confirmed by numerical experiments with three carefully chosen examples. It is pointed out that the application of Richardson Extrapolation together with explicit Runge-Kutta methods might be useful when some large-scale mathematical models, described by systems of partial differential equations, are handled numerically.
机译:考虑显式的Runge-Kutta方法。假定级数m,m = 1,2,3,4,等于所选方法的阶数p。研究了理查森外推法的应用对绝对稳定性的影响。迄今为止,仅在试图提高数值近似的准确性或将计算误差保持在预先规定的某个水平的情况下才使用Richardson外推法。另一个问题是与几种数值方法有关的理查森外推法的绝对稳定性,是本研究的主题。结果表明,不仅理查森外推法与显式Runge-Kutta方法的组合比基础数值方法更准确,而且它们的绝对稳定性区域更大。这意味着在使用Richardson Extrapolation的积分过程中可以使用更大的时间步长。理论研究的正确性通过三个实验实例的数值实验得到了证实。需要指出的是,当对由偏微分方程组描述的一些大型数学模型进行数值处理时,将Richardson外推法与显式Runge-Kutta方法一起使用可能会有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号