首页> 外文期刊>Computers & mathematics with applications >High-order TVL1-based images restoration and spatially adapted regularization parameter selection
【24h】

High-order TVL1-based images restoration and spatially adapted regularization parameter selection

机译:基于高阶TVL1的图像恢复和空间适应的正则化参数选择

获取原文
获取原文并翻译 | 示例

摘要

The total variation (TV) model with an L_1-fidelity term (TVL1) is a famous model to recover blurred and impulse noisy image with edges-preserving. However, it usually causes some staircase effects. In this paper, we propose a hybrid model combining the TV regularizer and the high-order TV regularizer with the TVL1 model (HTVL1) for blurred and salt-and-pepper impulse noisy image restoration. The solving algorithm is under the frame-work of alternating direction method of multipliers (ADMM). In addition, a spatially adapted regularization parameter selection scheme is also used. Numerical results show that the quality of restored images by the proposed methods is competitive with the quality of restored images by some other existing methods.
机译:具有L_1保真度项(TVL1)的总变化(TV)模型是一种著名的模型,可以保留边缘并恢复模糊和脉冲噪声图像。但是,它通常会引起一些阶梯效应。在本文中,我们提出了一种混合模型,将电视调节器和高阶电视调节器与TVL1模型(HTVL1)结合在一起,用于模糊和椒盐冲激噪声图像的恢复。该求解算法是在乘法器交替方向方法(ADMM)的框架下进行的。另外,还使用空间适应的正则化参数选择方案。数值结果表明,所提方法的图像恢复质量与其他已有方法的图像恢复质量具有竞争性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号