首页> 外文期刊>Computers & mathematics with applications >An a-posteriori error estimate for hp-adaptive DG methods for convection-diffusion problems on anisotropically refined meshes
【24h】

An a-posteriori error estimate for hp-adaptive DG methods for convection-diffusion problems on anisotropically refined meshes

机译:各向异性细化网格上对流扩散问题的hp自适应DG方法的后验误差估计

获取原文
获取原文并翻译 | 示例

摘要

We prove an a-posteriori error estimate for hp-adaptive discontinuous Galerkin methods for the numerical solution of convection-diffusion equations on anisotropically refined rectangular elements. The estimate yields global upper and lower bounds of the errors measured in terms of a natural norm associated with diffusion and a semi-norm associated with convection. The anisotropy of the underlying meshes is incorporated in the upper bound through an alignment measure. We present a series of numerical experiments to test the feasibility of this approach within a fully automated Zip-adaptive refinement algorithm.
机译:我们证明了对流-扩散方程在各向异性精细矩形元素上的数值解,证明了hp自适应不连续Galerkin方法的后验误差估计。根据与扩散相关的自然范数和与对流相关的半范数,估算得出了误差的全局上限和下限。通过对齐方式将下层网格的各向异性并入上限。我们提出了一系列数值实验,以测试这种方法在全自动的Zip自适应细化算法中的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号