首页> 外文期刊>Computers & mathematics with applications >Uniformly convergent additive finite difference schemes for singularly perturbed parabolic reaction-diffusion systems
【24h】

Uniformly convergent additive finite difference schemes for singularly perturbed parabolic reaction-diffusion systems

机译:奇摄动抛物线反应扩散系统的一致收敛加和有限差分格式

获取原文
获取原文并翻译 | 示例

摘要

In this paper ID parabolic systems of two singularly perturbed equations of reaction-diffusion type are examined. For the time discretization we consider two additive (or splitting) schemes defined on a uniform mesh and for the space discretization we use the classical central difference approximation defined on a Shishkin mesh. The uniform convergence of both the semidiscrete and the fully discrete problems is proved. The additive schemes are used to solve a test problem, and the results obtained with these schemes and the standard discretization using the backward Euler method are compared. Also, numerical results are presented in the case of systems of three equations. All the numerical results show the advantage in computational cost of the additive schemes compared to the standard discretization.
机译:本文研究了两个具有反应扩散型奇摄动方程的抛物型系统。对于时间离散化,我们考虑在均匀网格上定义的两个加法(或拆分)方案;对于空间离散化,我们使用在Shishkin网格上定义的经典中心差近似。证明了半离散和完全离散问题的一致收敛性。使用加性方案来解决测试问题,并比较了使用这些方案获得的结果和使用反向欧拉方法进行的标准离散化。同样,在三个方程组的情况下,给出了数值结果。与标准离散化相比,所有数值结果均显示了加性方案的计算成本优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号