首页> 外文期刊>Computers & mathematics with applications >SParC-LES: Enabling large eddy simulations with parallel sparse matrix computation tools
【24h】

SParC-LES: Enabling large eddy simulations with parallel sparse matrix computation tools

机译:SParC-LES:使用并行稀疏矩阵计算工具启用大型涡流仿真

获取原文
获取原文并翻译 | 示例

摘要

We discuss the design and development of a parallel code for Large Eddy Simulation (LES) by exploiting libraries for sparse matrix computations. We formulate a numerical procedure for the LES of turbulent channel flows, based on an approximate projection method, in terms of linear algebra operators involving sparse matrices and vectors. Then we implement the procedure using general-purpose linear algebra libraries as building blocks. This approach allows to pursue goals such as modularity, accuracy and robustness, as well as easy and fast exploitation of parallelism, with a relatively low coding effort. The parallel LES code developed in this work, named SParC-LES (Sparse Parallel Computation-based LES), exploits two parallel libraries: PSBLAS, providing basic sparse matrix operators and Krylov solvers, and MLD2P4, providing a suite of algebraic multilevel Schwarz preconditioners. Numerical experiments, concerning the simulation by SParC-LES of a turbulent flow in a plane channel, confirm that the LES code can achieve a satisfactory parallel performance. This supports our opinion that the software design methodology used to build SParC-LES yields a very good tradeoff between the exploitation of the computational power of parallel computers and the amount of coding effort. (C) 2015 Elsevier Ltd. All rights reserved.
机译:我们通过利用稀疏矩阵计算库讨论用于大涡模拟(LES)的并行代码的设计和开发。我们基于近似投影方法,针对涉及稀疏矩阵和向量的线性代数算子,为湍流通道的LES制定了数值程序。然后,我们使用通用线性代数库作为构建块来实现该过程。这种方法允许以相对较低的编码工作量实现诸如模块化,准确性和鲁棒性以及轻松快速地利用并行性等目标。在这项工作中开发的并行LES代码名为SParC-LES(基于稀疏并行计算的LES),它利用了两个并行库:提供基本的稀疏矩阵运算符和Krylov求解器的PSBLAS,以及提供一组代数多级Schwarz前置条件器的MLD2P4。通过SParC-LES模拟平面通道中的湍流,数值实验证实了LES代码可以实现令人满意的并行性能。这支持我们的观点,即用于构建SParC-LES的软件设计方法在利用并行计算机的计算能力与编码工作量之间产生了很好的权衡。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号