...
首页> 外文期刊>Computers & mathematics with applications >The method of variably scaled radial kernels for solving two-dimensional magnetohydrodynamic (MHD) equations using two discretizations: The Crank-Nicolson scheme and the method of lines (MOL)
【24h】

The method of variably scaled radial kernels for solving two-dimensional magnetohydrodynamic (MHD) equations using two discretizations: The Crank-Nicolson scheme and the method of lines (MOL)

机译:使用两个离散化方法求解二维磁流体动力学(MHD)方程的可变比例径向核方法:Crank-Nicolson方案和线法(MOL)

获取原文
获取原文并翻译 | 示例
           

摘要

MHD equations have many applications in physics and engineering. The model is coupled equations in velocity and magnetic field and has a parameter namely Hartmann. The value of Hartmann number plays an important role in the equations. When this parameter increases, using different meshless methods makes the oscillations in velocity near the boundary layers in the region of the problem. In the present paper a numerical meshless method based on radial basis functions (RBFs) is provided to solve MHD equations. For approximating the spatial variable, a new approach which is introduced by Bozzini et al. (2015) is applied. The method will be used here is based on the interpolation with variably scaled kernels. The methodology of the new technique is defining the scale function c on the domain Omega subset of R-d. Then the interpolation problem from the data locations x(j) is an element of R-d transforms to the new interpolation problem in the data locations (x(j), c(x(j))) is an element of Rd+1 (Bozzini et al., 2015). The radial kernels used in the current work are Multiquadrics (MQ), Inverse Quadric (IQ) and Wendland's function. Of course the latter one is based on compactly supported functions. To discretize the time variable, two techniques are applied. One of them is the Crank-Nicolson scheme and another one is based on MOL. The numerical simulations have been carried out on the square and elliptical ducts and the obtained numerical results show the ability of the new method for solving this problem. Also in appendix, we provide a computational algorithm for implementing the new technique in MATLAB software. (C) 2015 Elsevier Ltd. All rights reserved.
机译:MHD方程在物理和工程中有许多应用。该模型是速度和磁场耦合方程,参数为Hartmann。哈特曼数的值在方程中起重要作用。当此参数增加时,使用不同的无网格方法会使问题区域中边界层附近的速度发生振荡。在本文中,提供了一种基于径向基函数(RBF)的数值无网格方法来求解MHD方程。为了近似空间变量,Bozzini等人引入了一种新方法。 (2015)被应用。在此将使用基于可变比例内核的插值方法。新技术的方法是在R-d的域Omega子集上定义比例函数c。然后,来自数据位置x(j)的插值问题是Rd的元素,转换为数据位置(x(j),c(x(j)))的新插值问题是Rd + 1的元素(Bozzini等人,2015年)。当前工作中使用的径向核是Multiquadrics(MQ),Inverse Quadric(IQ)和Wendland函数。当然,后者基于紧凑支持的功能。为了离散化时间变量,应用了两种技术。其中一个是Crank-Nicolson方案,另一个是基于MOL的方案。在方管和椭圆管上进行了数值模拟,获得的数值结果表明了该新方法解决该问题的能力。同样在附录中,我们提供了一种用于在MATLAB软件中实现新技术的计算算法。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号