首页> 外文期刊>Computers & mathematics with applications >An entropy stable discontinuous Galerkin finite-element moment method for the Boltzmann equation
【24h】

An entropy stable discontinuous Galerkin finite-element moment method for the Boltzmann equation

机译:Boltzmann方程的熵稳定不连续Galerkin有限元矩方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a numerical approximation technique for the Boltzmann equation based on a moment-system approximation in velocity dependence and a discontinuous Galerkin finite-element approximation in position dependence. The closure relation for the moment systems derives from minimization of a suitable go-divergence. This divergence-based closure yields a hierarchy of tractable symmetric hyperbolic moment systems that retain the fundamental structural properties of the Boltzmann equation. The approximation in position dependence is based on the discontinuous Galerkin finite-element method. The resulting combined discontinuous Galerkin moment method corresponds to a Galerkin approximation of the Boltzmann equation in renormalized form. The new moment-closure formulation engenders a new upwind numerical flux function, based on half-space integrals of the approximate distribution. We establish that the proposed upwind flux ensures entropy dissipation of the discontinuous Galerkin finite element approximation. Numerical results are presented for a one-dimensional test case. (C) 2016 Elsevier Ltd. All rights reserved.
机译:本文提出了一种基于速度依赖的矩系统近似和位置依赖的不连续Galerkin有限元近似的Boltzmann方程数值近似技术。力矩系统的闭合关系来自于适当的离合最小化。这种基于散度的闭合产生了可处理的对称双曲矩系统的层次结构,该系统保留了波尔兹曼方程的基本结构特性。位置相关性的近似基于不连续的Galerkin有限元方法。所得的组合不连续Galerkin矩方法对应于重归一化形式的Boltzmann方程的Galerkin近似。新的力矩闭合公式基于近似分布的半空间积分,引入了新的迎风数值通量函数。我们确定提出的迎风通量确保了不连续Galerkin有限元近似的熵耗散。给出了一维测试案例的数值结果。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号