首页> 外文期刊>Computers & mathematics with applications >Breaking spaces and forms for the DPG method and applications including Maxwell equations
【24h】

Breaking spaces and forms for the DPG method and applications including Maxwell equations

机译:DPG方法和应用程序的突破空间和形式,包括麦克斯韦方程

获取原文
获取原文并翻译 | 示例

摘要

Discontinuous Petrov-Galerkin (DPG) methods are made easily implementable using "broken" test spaces, i.e., spaces of functions with no continuity constraints across mesh element interfaces. Broken spaces derivable from a standard exact sequence of first order (unbroken) Sobolev spaces are of particular interest. A characterization of interface spaces that connect the broken spaces to their unbroken counterparts is provided. Stability of certain formulations using the broken spaces can be derived from the stability of analogues that use unbroken spaces. This technique is used to provide a complete error analysis of DPG methods for Maxwell equations with perfect electric boundary conditions. The technique also permits considerable simplifications of previous analyses of DPG methods for other equations. Reliability and efficiency estimates for an error indicator also follow. Finally, the equivalence of stability for various formulations of the same Maxwell problem is proved, including the strong form, the ultraweak form, and various forms in between. (C) 2016 Elsevier Ltd. All rights reserved.
机译:不连续的Petrov-Galerkin(DPG)方法使用“中断”测试空间(即在网格单元界面上没有连续性约束的函数空间)可以轻松实现。从一阶标准精确序列(不间断的Sobolev空间)派生而来的间断空间尤其令人感兴趣。提供了将断开的空间连接到其未断开的对应空间的接口空间的表征。使用破折空间的某些制剂的稳定性可以从使用破折空间的类似物的稳定性中得出。该技术用于为具有理想电边界条件的麦克斯韦方程组的DPG方法提供完整的误差分析。该技术还可以大大简化DPG方法对其他方程式的先前分析。错误指示符的可靠性和效率估算也如下。最后,证明了相同麦克斯韦问题的各种制剂的稳定性等价性,包括强形式,超弱形式以及介于两者之间的各种形式。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号