首页> 外文期刊>Computers & mathematics with applications >Isogeometric analysis based on extended Catmull-Clark subdivision
【24h】

Isogeometric analysis based on extended Catmull-Clark subdivision

机译:基于扩展Catmull-Clark细分的等几何分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a subdivision-based finite element method as an integration of the isogeometric analysis (IGA) framework which adopts the uniform representation for geometric modeling and finite element simulation. The finite element function space is induced from the limit form of Catmull-Clark surface subdivision containing boundary subdivision schemes which has Cl continuity everywhere. It is capable of exactly representing complex geometries with any shaped boundaries which are represented as piecewise cubic B-spline curves. It is compatible with modern Computer Aided Design (CAD) software systems. The advantage of this strategy admits quadrilateral meshes of arbitrary topology. In this work, the computational domains with planar geometries are considered. We establish the approximation properties of Catmull-Clark surface subdivision function based on the Bramble-Hilbert lemma. Numerical tests are performed through three Poisson's equations with the Dirichlet boundary condition to corroborate the theoretical proof. (C) 2015 Elsevier Ltd. All rights reserved.
机译:在本文中,我们提出了一种基于细分的有限元方法,作为等几何分析(IGA)框架的集成,该框架采用统一表示法进行几何建模和有限元模拟。有限元函数空间是从Catmull-Clark曲面细分的极限形式导出的,该极限细分包含边界细分方案,该方案在各处都具有Cl连续性。它能够精确表示具有任意形状边界的复杂几何形状,这些边界以分段三次B样条曲线表示。它与现代计算机辅助设计(CAD)软件系统兼容。这种策略的优点是可以采用任意拓扑的四边形网格。在这项工作中,考虑了具有平面几何形状的计算域。我们基于Bramble-Hilbert引理建立Catmull-Clark表面细分函数的逼近性质。通过在Dirichlet边界条件下的三个Poisson方程进行数值测试,以证实理论证明。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号