首页> 外文期刊>Computers & mathematics with applications >High accuracy analysis of an H-1-Galerkin mixed finite element method for two-dimensional time fractional diffusion equations
【24h】

High accuracy analysis of an H-1-Galerkin mixed finite element method for two-dimensional time fractional diffusion equations

机译:二维时间分数扩散方程的H-1-Galerkin混合有限元方法的高精度分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an H-1-Galerkin mixed finite element approximate scheme is established for a class of two-dimensional time fractional diffusion equations by using the bilinear element, Raviart-Thomas element and L1 time stepping method, which is unconditionally stable and free of LBB condition. And then, without the classical Ritz projection, superclose results for the original variable u in H-1-norm and the flux (p) over right arrow= del u in H(div,Omega)-norm are derived by means of properties of the elements and 1,1 approximation. Furthermore, with the help of the interpolation postprocessing operator, the global superconvergence results for the original variable u in H-1-norm are obtained. Finally, numerical simulations verify that the theoretical results are true on both regular meshes and anisotropic meshes. (C) 2017 Published by Elsevier Ltd.
机译:本文采用双线性元,Raviart-Thomas元和L1时间步长方法,为一类二维时间分数扩散方程建立了H-1-Galerkin混合有限元近似格式,该方法无条件稳定且自由LBB状况。然后,在没有经典的Ritz投影的情况下,通过H的性质推导H-1范数中原始变量u和H(div,Omega)范数中右箭头= del u上的通量(p)的超闭合结果。元素和1,1近似。此外,借助内插后处理运算符,可以获得H-1-范数中原始变量u的全局超收敛结果。最后,数值模拟验证了理论结果在规则网格和各向异性网格上都是正确的。 (C)2017由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号