首页> 外文期刊>Computers & mathematics with applications >Computational time and domain size analysis of porous media flows using the lattice Boltzmann method
【24h】

Computational time and domain size analysis of porous media flows using the lattice Boltzmann method

机译:格子Boltzmann方法对多孔介质流的计算时间和域大小分析

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this study is to investigate the computational time required to describe the fluid flow behavior through a porous medium and its relation to the corresponding domain size. The fluid flow behavior is recovered using the lattice Boltzmann method (LBM). The selected methodology has been applied because of its feasibility for mimicking the fluid flow behavior in complex geometries and moving boundaries. In this study, three different porosities are selected to calculate, for several sizes domain, the required computational time to reach the steady state. Two different cases are implemented: (1) increasing the transversal area, but keeping the layer thickness as a constant, and (2) increasing the total volume of the pore domain by increasing all the dimensions of the volume equally. The porous media are digitally generated by placing the solid obstacles randomly, but uniformly distributed in the whole domain. Several relationships relating the computational time, domain size and porosity are proposed. Additionally, an expression that relates the hydraulic tortuosity to the porosity is proposed. (C) 2016 Elsevier Ltd. All rights reserved.
机译:本研究的目的是研究描述通过多孔介质的流体流动行为及其与相应区域尺寸的关系所需的计算时间。使用晶格玻尔兹曼方法(LBM)恢复流体流动行为。选择的方法已被应用,因为它可模仿复杂几何形状和移动边界中的流体流动行为。在这项研究中,选择了三种不同的孔隙度,以针对多个尺寸域计算达到稳态所需的计算时间。实施两种不同的情况:(1)增加横向面积,但保持层厚度不变,(2)通过均等增加体积的所有尺寸来增加孔域的总体积。多孔介质是通过随机放置固体障碍物以数字方式生成的,但均匀分布在整个域中。提出了一些与计算时间,区域大小和孔隙率有关的关系。另外,提出了将水力曲折度与孔隙率相关的表达式。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号