首页> 外文期刊>Computers & mathematics with applications >Toward a GPU-aware comparison of explicit and implicit CFD simulations on structured meshes
【24h】

Toward a GPU-aware comparison of explicit and implicit CFD simulations on structured meshes

机译:对结构网格物体上显式和隐式CFD仿真的GPU感知比较

获取原文
获取原文并翻译 | 示例

摘要

A computational Fluid Dynamics (CFD) code for steady simulations solves a set of non-linear partial differential equations using an iterative time stepping process, which could follow an explicit or an implicit scheme. On the CPU, the difference between both time stepping methods with respect to stability and performance has been well covered in the literature. However, it has not been extended to consider modern high-performance computing systems such as Graphics Processing Units (GPU). In this work, we first present an implementation of the two time-stepping methods on the GPU, highlighting the different challenges on the programming approach. Then we introduce a classification of basic CFD operations, found on the degree of parallelism they expose, and study the potential of GPU acceleration for every class. The classification provides local speedups of basic operations, which are finally used to compare the performance of both methods on the GPU. The target of this work is to enable an informed-decision on the most efficient combination of hardware and method when facing a new application. Our findings prove, that the choice between explicit and implicit time integration relies mainly on the convergence of explicit solvers and the efficiency of preconditioners on the GPU. (C) 2017 Elsevier Ltd. All rights reserved.
机译:用于稳定模拟的计算流体力学(CFD)代码使用迭代时间步长过程解决了一组非线性偏微分方程,该过程可以遵循显式或隐式方案。在CPU上,两种时间步进方法在稳定性和性能方面的差异已在文献中得到了很好的介绍。但是,尚未扩展到考虑现代高性能计算系统,例如图形处理单元(GPU)。在这项工作中,我们首先介绍在GPU上实现两种时间步进方法的方法,重点介绍编程方法上的不同挑战。然后,我们介绍了基本CFD操作的分类,并根据它们暴露的并行度进行了研究,并研究了每类GPU加速的潜力。该分类提供了基本操作的本地加速,最终将它们用于比较两种方法在GPU上的性能。这项工作的目标是在面对新应用程序时就最有效的硬件和方法组合做出明智的决定。我们的发现证明,在显式和隐式时间积分之间进行选择主要取决于显式求解器的收敛性和GPU上预处理器的效率。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号