首页> 外文期刊>Computers & mathematics with applications >Residual based error estimate and quasi-interpolation on polygonal meshes for high order BEM-based FEM
【24h】

Residual based error estimate and quasi-interpolation on polygonal meshes for high order BEM-based FEM

机译:基于BEM的高阶有限元法在多边形网格上的基于残差的误差估计和拟插值

获取原文
获取原文并翻译 | 示例

摘要

Only a few numerical methods can treat boundary value problems on polygonal and polyhedral meshes. The BEM-based Finite Element Method is one of the new discretization strategies, which make use of and benefits from the flexibility of these general meshes that incorporate hanging nodes naturally. The article in hand addresses quasi-interpolation operators for the approximation space over polygonal meshes. To prove interpolation estimates the Poincare constant is bounded uniformly for patches of star-shaped elements. These results give rise to the residual based error estimate for high order BEM-based FEM and its reliability as well as its efficiency are proven. Stich a posteriori error estimates can be used to gauge the approximation quality and to implement adaptive FEM strategies. Numerical experiments show optimal rates of convergence for meshes with non-convex elements on uniformly as well as on adaptively refined meshes. (C) 2016 Elsevier Ltd. All rights reserved.
机译:只有几种数值方法可以处理多边形和多面体网格上的边值问题。基于BEM的有限元方法是新的离散化策略之一,该策略利用并受益于这些自然包含悬挂节点的通用网格的灵活性。在手的文章讨论了多边形网格上近似空间的拟插值算子。为了证明插值估计,庞加莱常数对星状元素的块统一限制。这些结果导致对基于高阶BEM的FEM的基于残差的误差估计,并证明了其可靠性和效率。后验误差估计可以用来估计近似质量并实现自适应FEM策略。数值实验表明,对于均匀分布的网格和自适应精制的非凸单元的网格,其收敛速度最佳。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号