首页> 外文期刊>Computers & mathematics with applications >High accuracy complete elliptic integrals for solving the Hertzian elliptical contact problems
【24h】

High accuracy complete elliptic integrals for solving the Hertzian elliptical contact problems

机译:高精度完整椭圆积分,用于解决赫兹椭圆接触问题

获取原文
获取原文并翻译 | 示例

摘要

Complete Elliptic integrals are widely used for solving different types of real problems. For instance, it is required by the Hertzian elliptical contact model, which is the fundament of contact mechanics and establishes the relationship between the stress and the deformation for two elastic solids. Since there is a singular point in the definition domain, traditional approaches often behave badly there. Moreover, no research has noticed the importance of the IEEE quadruple-precision standard on the high accuracy calculation of elliptic integrals. This paper presents a fast high accuracy method that incorporates the 128-bit quadruple-precision floating-point (ISO/IEC/IEEE 60559:2011, IEEE Std 754-2008). The method is used for solving the Hertzian elliptical contact problems. The experiments show that the method can achieve very high accuracy results. (C) 2016 Elsevier Ltd. All rights reserved.
机译:完整的椭圆积分广泛用于解决不同类型的实际问题。例如,它是接触力学的基础,即赫兹椭圆接触模型,它建立了两个弹性固体的应力与变形之间的关系。由于定义域中存在一个奇异点,因此传统方法在该域中通常表现不佳。而且,没有研究注意到IEEE四精度标准对椭圆积分的高精度计算的重要性。本文提出了一种结合了128位四精度浮点数的快速高精度方法(ISO / IEC / IEEE 60559:2011,IEEE Std 754-2008)。该方法用于解决赫兹椭圆接触问题。实验表明,该方法可以达到很高的精度。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号