首页> 外文期刊>Computers & mathematics with applications >The lumped mass finite element method for surface parabolic problems: Error estimates and maximum principle
【24h】

The lumped mass finite element method for surface parabolic problems: Error estimates and maximum principle

机译:表面抛物线问题的集中质量有限元方法:误差估计和最大原理

获取原文
获取原文并翻译 | 示例

摘要

The lumped mass method is extended to the surface finite element method for solving the surface parabolic equations. The main purpose of the proposed method is to overcome the difficulty that the surface finite element method does not guarantee the maximal principle of the surface heat equation. Optimal error estimates are given for the semidiscrete and fully-discrete schemes of the proposed method respectively. The maximum principle is shown for surface heat equations and its preservation by the lumped mass surface finite element under the Delaunay type triangulation. Moreover, some results of positivity and monotonicity are derived for nonlinear parabolic equations. Finally some numerical experiments are displayed to illustrate the validity and numerical performance of the proposed method. (C) 2018 Elsevier Ltd. All rights reserved.
机译:集总质量方法扩展为用于求解表面抛物线方程的表面有限元方法。提出的方法的主要目的是克服表面有限元法不能保证表面热方程的最大原理的困难。分别给出了该方法的半离散和全离散方案的最优误差估计。给出了表面热方程的最大原理,并在Delaunay型三角剖分下通过集总质量表面有限元对其进行了保存。此外,还针对非线性抛物方程推导了一些正性和单调性的结果。最后通过数值实验证明了该方法的有效性和数值性能。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号