首页> 外文期刊>Computers & mathematics with applications >Exponential integrator methods for systems of non-linear space-fractional models with super-diffusion processes in pattern formation
【24h】

Exponential integrator methods for systems of non-linear space-fractional models with super-diffusion processes in pattern formation

机译:图案形成中具有超扩散过程的非线性空间分数模型系统的指数积分方法

获取原文
获取原文并翻译 | 示例

摘要

Nonlocality and spatial heterogeneity of many practical systems have made fractional differential equations very useful tools in Science and Engineering. However, solving these type of models is computationally demanding. In this paper, we propose an exponential integrator method for space fractional models as an attractive and easy-to-code alternative for other existing second-order exponential integrator methods. This scheme is based on using a real distinct poles discretization for the underlying matrix exponentials. One of the major benefits of the proposed scheme is that the algorithm could be easily implemented in parallel to take advantage of multiple processors for increased computational efficiency. The scheme is established to be second-order convergent; and proven to be robust for nonlinear space fractional reaction-diffusion problems involving non-smooth initial data. Our approach is exhibited by solving a system of two-dimensional problems which exhibits pattern formation and has applications in cell-division. Empirically, super-diffusion processes are displayed by investigating the effect of the fractional power of the underlying Laplacian operator on the pattern formation found in these models. Furthermore, the superiority of our method over competing second order ETD schemes, BDF2 scheme, and IMEX schemes is demonstrated. Published by Elsevier Ltd.
机译:许多实际系统的非局部性和空间异质性使得分数阶微分方程成为科学和工程学中非常有用的工具。然而,解决这些类型的模型在计算上是需要的。在本文中,我们提出了一种用于空间分数模型的指数积分器方法,作为其他现有的二阶指数积分器方法的一种有吸引力且易于编码的替代方法。该方案基于对基础矩阵指数使用实数不同的极点离散化。所提出的方案的主要优点之一是该算法可以很容易地并行实现以利用多个处理器来提高计算效率。该方案建立为二阶收敛;并被证明对涉及非光滑初始数据的非线性空间分数反应扩散问题具有鲁棒性。我们的方法是通过解决二维问题系统来展示的,该系统表现出图案形成并已应用于细胞分裂。根据经验,通过研究基础拉普拉斯算子的分数幂对这些模型中形成的图案的影响来显示超扩散过程。此外,证明了我们的方法优于竞争性二阶ETD方案,BDF2方案和IMEX方案的优势。由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号