首页> 外文期刊>Computers & mathematics with applications >An efficient numerical algorithm for multi-dimensional time dependent partial differential equations
【24h】

An efficient numerical algorithm for multi-dimensional time dependent partial differential equations

机译:多维时间相关偏微分方程的有效数值算法

获取原文
获取原文并翻译 | 示例

摘要

An efficient and robust numerical scheme based on Haar wavelets and finite differences is suggested for the solution of two-dimensional time dependent linear and nonlinear partial differential equations (PDEs). Excellent feature of the scheme is the conversion of linear and non-linear PDEs to algebraic equations which are comparatively easy to handle. Convergence of the scheme, which guarantees small error norm as the resolution level increases, is also an important part of this work. Different error norms are computed to check efficiency of the technique. Computations verify accuracy, flexibility and low computational cost of the method. (C) 2018 Elsevier Ltd. All rights reserved.
机译:针对二维时间相关的线性和非线性偏微分方程(PDE),提出了一种基于Haar小波和有限差分的高效鲁棒数值方案。该方案的突出特点是将线性和非线性PDE转换为比较容易处理的代数方程。该方案的收敛性也是这项工作的重要组成部分,该方案可确保随着分辨率级别的提高而出现较小的误差范数。计算不同的错误规范以检查该技术的效率。计算验证了该方法的准确性,灵活性和低计算成本。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号