首页> 外文期刊>Computers & mathematics with applications >A mixed finite element formulation for slightly compressible finite elasticity with stiff fibre reinforcement. Two fibre families. Uniaxial tension formulation
【24h】

A mixed finite element formulation for slightly compressible finite elasticity with stiff fibre reinforcement. Two fibre families. Uniaxial tension formulation

机译:一种混合的有限元配方,可通过硬质纤维增强来轻微压缩有限弹性。两个光纤家族。单轴张力公式

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel finite element based formulation for the solution of the static mechanical mixed boundary value problem of a finite elastic solid reinforced by two distinct, stiff fibre families. The fibre tensions, are assumed decoupled and uniaxial, at out-set. The associated energy conjugate fibre stretch rates are shown to be uniaxial by duality. The natively displacement dependent fibre tension-fibre stretch pairs are replaced by auxiliary independent variables. The complementary, displacement based, stresses and energy conjugate strain rates become tensionless and stretch-rate-less in the two fibre directions, respectively, by construction. An additively decoupled hyperelastic strain energy ansatz in terms of the fibre stretches and a novel apparently doubly stretchless Cauchy-Green tensor is used. The displacement based part of the formulation is set in an apparently inextensible fibre metric space. The proposed uniaxial fibre tension description is statically exact for the fully constrained problem, and the novel doubly stretchless Cauchy-Green tensor is conditionally kinematically admissible in its vicinity. The formulation is realised as a five field mixed finite element method admitting separate higher order approximations in H-1, for the displacement, and in L-2, for the energy conjugate fibre tensions and stretches, respectively. The convergence and correctness of the implementation is verified by numerical and analytical examples. (C) 2017 Elsevier Ltd. All rights reserved.
机译:我们提出了一种新颖的基于有限元的公式,用于解决由两个截然不同的硬纤维族增强的有限弹性固体的静态机械混合边界值问题。假定纤维张力在一开始就是去耦的和单轴的。相关的能量共轭纤维拉伸速率通过双重性显示为单轴的。与局部位移有关的纤维张力-纤维拉伸对被辅助独立变量代替。通过构造,基于位移的互补应力和能量共轭应变率分别在两个纤维方向上变为无张力和无拉伸率。就纤维拉伸而言,使用了附加解耦的超弹性应变能ansatz,并使用了一种新型的表面上没有双重拉伸的柯西-格林张量。配方的基于位移的部分设置在一个明显不可扩展的纤维度量空间中。所提出的单轴纤维张力描述对于完全受约束的问题在静态上是精确的,并且新颖的双重无拉伸柯西-格林张量在其附近有条件地在运动学上是可接受的。该公式是通过五场混合有限元方法实现的,该方法允许分别在H-1(对于位移)和L-2(对于能量共轭纤维张力和拉伸)中分别使用高阶近似。数值和分析实例验证了该实现的收敛性和正确性。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号