首页> 外文期刊>Computers & mathematics with applications >An optimal compact sixth-order finite difference scheme for the Helmholtz equation
【24h】

An optimal compact sixth-order finite difference scheme for the Helmholtz equation

机译:Helmholtz方程的最佳紧致六阶有限差分格式

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present an optimal compact finite difference scheme for solving the 2D Helmholtz equation. A convergence analysis is given to show that the scheme is sixth-order in accuracy. Based on minimizing the numerical dispersion, a refined optimization rule for choosing the scheme's weight parameters is proposed. Numerical results are presented to demonstrate the efficiency and accuracy of the compact finite difference scheme with refined parameters. (C) 2018 Elsevier Ltd. All rights reserved.
机译:在本文中,我们提出了一种用于求解二维Helmholtz方程的最优紧致有限差分方案。收敛分析表明该方案的精度为六阶。在最小化数值离散的基础上,提出了一种选择方案权重参数的优化规则。数值结果表明了具有改进参数的紧凑有限差分方案的有效性和准确性。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号