首页> 外文期刊>Computers & mathematics with applications >Analysis of three-dimensional anisotropic heat conduction problems on thin domains using an advanced boundary element method
【24h】

Analysis of three-dimensional anisotropic heat conduction problems on thin domains using an advanced boundary element method

机译:使用高级边界元方法分析薄域上的三维各向异性导热问题

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an advanced boundary element method (BEM) is developed for solving three-dimensional (3D) anisotropic heat conduction problems in thin-walled structures. The troublesome nearly singular integrals, which are crucial in the applications of the BEM to thin structures, are calculated efficiently by using a nonlinear coordinate transformation method. For the test problems studied, promising BEM results with only a small number of boundary elements have been obtained when the thickness of the structure is in the orders of micro-scales (10(-6)), which is sufficient for modeling most thin-walled structures as used in, for example, smart materials and thin layered coating systems. The advantages, disadvantages as well as potential applications of the proposed method, as compared with the finite element method (FEM), are also discussed. (C) 2017 Elsevier Ltd. All rights reserved.
机译:本文提出了一种先进的边界元方法(BEM),用于解决薄壁结构中的三维(3D)各向异性导热问题。通过使用非线性坐标变换方法,可以有效地计算出麻烦的近奇异积分,这些积分对于将BEM应用到薄结构中至关重要。对于所研究的测试问题,当结构的厚度为微米级(10(-6))时,仅用少量的边界元素就获得了有希望的BEM结果,这足以对大多数薄壁模型进行建模。壁结构,例如用于智能材料和薄层涂层系统。与有限元方法(FEM)相比,还讨论了该方法的优缺点和潜在应用。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号