首页> 外文期刊>Computers & mathematics with applications >Improvement and application of weakly compressible moving particle semi-implicit method with kernel-smoothing algorithm
【24h】

Improvement and application of weakly compressible moving particle semi-implicit method with kernel-smoothing algorithm

机译:核心平滑算法弱可压缩移动粒子半隐式方法的改进与应用

获取原文
获取原文并翻译 | 示例

摘要

The moving particle semi-implicit method (MPS) is a well-known Lagrange method that offers advantageous in addressing complex fluid problems, but particle distribution is an area that requires refinement. For this study, a particle smoothing algorithm was developed and incorporated into the weakly compressible MPS (sWC-MPS). From the definition and derivation of basic MPS operators, uniform particle distribution is critical to numerical accuracy. Within the framework of sWC-MPS, numerical operators were modified by implementing coordinate transformation and smoothing algorithm. Modifying numerical operators significantly improved particle clustering, smoothed pressure distributions, and reduced pressure oscillations. To validate the numerical feasibility of the method, several cases were numerically simulated to compare sWC-MPS to the weakly compressible MPS (WC-MPS): a pre-defined two-dimensional (2-D) analytical function, Poiseuille's flow, Taylor Green vortex, and dam break. The results showed a reduction of errors caused by irregular particle distribution with lower particle clustering and smaller pressure oscillation. In addition, a larger Courant number, which represents a larger time step, was tested. The results showed that the new sWC-MPS algorithm achieves numerical accuracy even using a larger Courant number, indicating improved computational efficiency.
机译:移动粒子半隐式方法(MPS)是一种众所周知的拉格朗日方法,可提供有利于解决复杂的流体问题,但粒子分布是需要改进的区域。对于该研究,开发了一种粒子平滑算法并将其掺入到弱可压缩的MPS(SWC-MPS)中。根据基本MPS运算符的定义和推导,均匀的粒度分布对于数值准确性至关重要。在SWC-MPS的框架内,通过实现坐标变换和平滑算法来修改数值操作员。改变数值操作员显着改善粒子聚类,平滑的压力分布和减压振荡。为了验证该方法的数值可行性,数控模拟几种情况以将SWC-MPS比较至弱可压缩的MPS(WC-MPS):预定义的二维(2-D)分析功能,Poiseuille流量,泰勒绿漩涡和坝休息。结果表明,由于具有较低粒子聚类和更小的压力振荡而导致的颗粒分布引起的误差减少。此外,测试了代表较大时间步长的较大的龙头数。结果表明,新的SWC-MPS算法即使使用较大的奏级数,也可以实现数值准确性,表明改善的计算效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号