首页> 外文期刊>Computers & mathematics with applications >A homotopy-based wavelet approach for large deflection of a circular plate on nonlinear foundations with parameterized boundaries
【24h】

A homotopy-based wavelet approach for large deflection of a circular plate on nonlinear foundations with parameterized boundaries

机译:一种基于同型基于偏转的圆形板与参数边界的非线性基础的大波偏转

获取原文
获取原文并翻译 | 示例

摘要

A Coiflet-type wavelet-homotopy approach is implemented to investigate the large deformation of a circular plate resting on different nonlinear foundations with various boundary parameters. A parameterized and continuous boundary model for circular plate with various constraints of rotation and translation has been proposed overlooked in previous studies. Parameterized wavelet approximation of arbitrary Robin-type boundary is reconstituted without variable substitution. Comprehensive analysis on the parameterized Robin-type boundaries is conducted by Linear Programming Approach, indicating the boundary singularities are actually false corresponding to the degenerated cases of Dirichlet-type and Neumann-type ones. Highly accurate Coiflet-type solutions of the coupled governing nonlinear differential equations with integration involving in extreme bending of circular plate have been obtained performing good computational efficiency in excellent agreement with other numerical results, which implies the wavelet scheme is a high precision computation method with great potential in giving highly accurate solutions of strongly nonlinear problems.
机译:实现了一种谱型小波 - 同型方法,以研究围绕不同边界参数搁在不同非线性基础上的圆形板的大变形。提出了在先前研究中忽略了具有各种旋转约束和翻译的圆形板的参数化和连续边界模型。任意Robin型边界的参数化小波近似在没有变量替换的情况下重建。通过线性规划方法对参数化的罗宾型边界进行综合分析,指示边界奇点实际上是假的,对应于Dirichlet型和Neumann-Type Oner的退化情况。已经获得了具有涉及圆形板的极端弯曲的耦合控制非线性微分方程的高度精确的Coiflet型解决方案,其具有良好的计算效率与其他数值结果的良好的计算效率,这意味着小波方案是一种高精度计算方法潜力在给出强大的强烈解法的强烈非线性问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号