首页> 外文期刊>Computers & mathematics with applications >Very high-order asymptotic-preserving schemes for hyperbolic systems of conservation laws with parabolic degeneracy on unstructured meshes
【24h】

Very high-order asymptotic-preserving schemes for hyperbolic systems of conservation laws with parabolic degeneracy on unstructured meshes

机译:具有抛物面斑点的抛物线简并在非结构化网眼上具有非常高级渐近保护方案

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider the numerical approximation of hyperbolic systems of conservation laws with stiff source terms and parabolic degeneracy in the asymptotic limit. We are more precisely interested in the design of high-order asymptotic-preserving schemes on unstructured meshes. Our approach is based on a very simple modification of the numerical flux associated with the usual HLL scheme and boils down to a sharp control of the underlying numerical diffusion. The strategy allows to capture the correct asymptotic parabolic behaviour and to preserve the high-order accuracy also in the asymptotic limit. Numerical experiments are proposed to illustrate these properties.
机译:在本文中,我们考虑了渐近源术语和抛物线源术语和抛物线退化的巩固系统的数值近似。我们更精确对非结构化网格上的高阶渐近保存方案设计。我们的方法基于与通常的HLL方案相关的数值通量的非常简单的修改,并归结为潜在数值扩散的急剧控制。该策略允许捕获正确的渐近抛物线行为,并在渐近极限中保持高阶精度。提出了数值实验以说明这些性质。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号