首页> 外文期刊>Computers & mathematics with applications >Numerical simulation of deflagration-to-detonation transition via shock-multiple flame kernels interactions
【24h】

Numerical simulation of deflagration-to-detonation transition via shock-multiple flame kernels interactions

机译:通过冲击多火焰核相互作用的缺口对爆炸过渡的数值模拟

获取原文
获取原文并翻译 | 示例

摘要

The deflagration-to-detonation transition via the interaction of a weak shock with a series of discrete laminar flames is analyzed computationally based on the unsteady reactive Navier-Stokes equations with one-step Arrhenius chemistry. For comparison, simulations with the Euler equations are also performed. The numerical setup aims to mimic an array of laminar flames ignited at different spark times, artificially inducing chemical activity to stimulate the coupling between the gas dynamics and the chemical energy release for the deflagration-to-detonation transition. The interaction of the weak shock with the first cylindrical flame demonstrates a very good agreement with the results in the literature and that a single weak shock-flame interaction is insufficient to cause a prompt DDT. However, a high degree of Richtmyer-Meshkov instabilities induced by repetitive shock-flame and shock-boundary interactions generate turbulence that accelerates the flame surface, referred to as the flame brush, until eventually a hot spot ignition in the unreacted material develops into a multi-headed detonation wave. In the absence of physical diffusion in the Euler simulation, the enhanced burning rate of the turbulent flame brush is suppressed. Nevertheless, the intense flow fluctuations generated by the interactions of shocks, boundary and flames create the conditions under which a deflagration-to-detonation transition can potentially occur at later times. A parametric study is also reported in this paper to assess the influence of various physical parameters on the transition event and to explore scaling relationships among these parameters. (C) 2020 Elsevier Ltd. All rights reserved.
机译:通过用一步arrhenius化学的非定常的反应纳米 - 斯托克斯方程计算通过与一系列离散层状火焰进行弱冲击的交互通过与一系列离散的层状火焰的相互作用进行换挡转换。为了比较,还执行具有欧拉方程的模拟。数值设置旨在模拟在不同火花次时点燃的层状火焰阵列,人工诱导化学活性,以刺激气体动力学和化学能源之间的耦合,以便用于释放到爆炸转变。与第一圆柱形火焰的弱冲击的相互作用与文献中的结果进行了非常好的一致性,并且单个弱冲击火焰相互作用不足以导致提示DDT。然而,通过重复冲击火焰和冲击边界相互作用引起的高度的Richtmyer-Meshkov不稳定性产生湍流,从而加速火焰表面,称为火焰刷,直到最终在未反应的材料中的热点点火形成为多个-headed爆炸波。在欧拉模拟中没有物理扩散的情况下,抑制了湍流火焰刷的增强燃烧速率。然而,由冲击,边界和火焰的相互作用产生的强烈流动波动产生了在后面的时间可能发生脱透明爆炸转变的条件。本文还报道了参数研究,以评估各种物理参数对转换事件的影响,并探索这些参数之间的缩放关系。 (c)2020 elestvier有限公司保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号