首页> 外文期刊>Computers & mathematics with applications >FESTUNG 1.0: Overview, usage, and example applications of the MATLAB/GNU Octave toolbox for discontinuous Galerkin methods
【24h】

FESTUNG 1.0: Overview, usage, and example applications of the MATLAB/GNU Octave toolbox for discontinuous Galerkin methods

机译:Festung 1.0:Matlab / GNU Octave Toolbox的概述,用法和示例应用程序,用于不连续Galerkin方法

获取原文
获取原文并翻译 | 示例

摘要

The present work documents the current state of development for our MATLAB/GNU Octave-based open source toolbox FESTUNG (Finite Element Simulation Toolbox for UN structured Grids). The goal of this project is to design a user-friendly, research-oriented, yet computationally efficient software tool for solving partial differential equations (PDEs). Since the release of its first version, FESTUNG has been actively used for research and teaching purposes such as the design of novel algorithms and discretization schemes, benchmark studies, or just providing students with an easy-to-learn software package to study advanced numerical techniques and good programming practices. For spatial discretization, the package employs various discontinuous Galerkin (DG) methods, while different explicit, implicit, or semi-implicit Runge-Kutta schemes can be used for time stepping. The current publication discusses the most important aspects of our toolbox such as the code design concepts and various discretization procedures illustrated in some detail using a standard advection-diffusion-reaction equation. Moreover, we present selected applications already supported in FESTUNG including solvers for the two-dimensional shallow-water equations, the Cahn-Hilliard equation, and a coupled multi-physics model of free surface / subsurface flow. (C) 2020 Elsevier Ltd. All rights reserved.
机译:目前的工作记录了基于MATLAB / GNU Octave的开源工具箱Festung的当前开发状态​​(UN结构化网格的有限元仿真工具箱)。该项目的目标是设计一个用于求解部分微分方程(PDE)的用户友好,面向研究的但是计算的有效的软件工具。自发行版本以来,Festung已积极用于研究和教学目的,例如新颖算法和离散化方案,基准研究,或仅为学生提供易于学习的软件包,以研究高级数值技术和良好的编程实践。对于空间离散化,该包装采用各种不连续的Galerkin(DG)方法,而不同的显式,隐式或半隐式跳动-Kutta方案可以用于时间踏板。目前的出版物讨论了我们工具箱最重要的方面,例如使用标准的平坦扩散反应方程在一些细节中示出的代码设计概念和各种离散化程序。此外,我们提出了已经支持Festung的所选应用,包括二维浅水方程,CAHN-HILLIARD方程和自由表面/地下流动的耦合多物理模型。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号