首页> 外文期刊>Computers & mathematics with applications >Joint image segmentation and registration based on a dynamic level set approach using truncated hierarchical B-splines
【24h】

Joint image segmentation and registration based on a dynamic level set approach using truncated hierarchical B-splines

机译:基于使用截短的分层B样条的动态级别设置方法的联合图像分割和注册

获取原文
获取原文并翻译 | 示例

摘要

We present a novel approach for joint image segmentation and nonrigid registration using bidirectional composition based level set formulation. This efficient framework incorporates automatic structural analysis from image segmentation into the registration framework. This method has shown an improved performance as compared to carrying out segmentation and registration separately. Unlike previous approaches, the implicit level set function defining the segmentation contour and the spatial transformation function that maps the deformation for image registration are both defined using B-splines. This joint level set framework uses a variational form of an atlas-based segmentation together with large deformation based nonrigid registration. In addition, a bidirectional composition framework is introduced to incorporate a more symmetric update. The minimization of the variational form is accomplished by dynamic evaluations on a set of successively refined adaptive grids at multiple image resolutions. The improvement in the description of the segmentation result using higher order splines leads to a better accuracy of both the image segmentation and registration process. The performance of the proposed method is demonstrated on synthetic and medical images to show the improvement as compared to other registration methods. (C) 2019 Elsevier Ltd. All rights reserved.
机译:我们介绍了一种使用基于双向组合物的水平集制剂的联合图像分割和非脂肪注册的新方法。该有效框架包括从图像分段到注册框架中的自动结构分析。与分开进行分割和注册相比,该方法显示了改进的性能。与先前的方法不同,隐式级别集合函数定义分割轮廓和映射图像配准变形的空间变换功能均使用B样条定义。该联合水平集框架使用基于ATLAS的分割的变化形式以及基于大变形的非重字段注册。另外,引入了双向组合框架来包含更令人对称的更新。变分形式的最小化是通过在多个图像分辨率的一组连续改进的自适应网格上进行动态评估来实现的。使用高阶样条的分割结果描述的改进导致图像分割和注册过程的更好准确性。在合成和医学图像上证明了所提出的方法的性能,以显示与其他登记方法相比的改善。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号