首页> 外文期刊>Computers & mathematics with applications >Superconvergence of numerical gradient for weak Galerkin finite element methods on nonuniform Cartesian partitions in three dimensions
【24h】

Superconvergence of numerical gradient for weak Galerkin finite element methods on nonuniform Cartesian partitions in three dimensions

机译:三维非均匀笛卡尔分区弱Galerkin有限元方法的数值梯度的超级度验收

获取原文
获取原文并翻译 | 示例

摘要

A superconvergence error estimate for the gradient approximation of the second order elliptic problem in three dimensions is analyzed by using weak Galerkin finite element scheme on the uniform and non-uniform cubic partitions. Due to the loss of the symmetric property from two dimensions to three dimensions, this superconvergence result in three dimensions is not a trivial extension of the recent superconvergence result in two dimensions Li et al. (0000) from rectangular partitions to cubic partitions. The error estimate for the numerical gradient in the L-2-norm arrives at a superconvergence order of O(h(r))(1.5 = r = 2) when the lowest order weak Galerkin finite elements consisting of piecewise linear polynomials in the interior of the elements and piecewise constants on the faces of the elements are employed. A series of numerical experiments are illustrated to confirm the established superconvergence theory in three dimensions. (C) 2019 Elsevier Ltd. All rights reserved.
机译:通过在均匀和非均匀立方分区上使用弱Galerkin有限元方案,分析了三维梯度近似的超级度误差估计三维椭圆质问题。由于从两个维度到三维的对称性损失,这种超级度验收率导致三个维度不是最近的超级聚合物的琐碎延伸,导致的两个维等。 (0000)从矩形分区到三次分区。 L-2-NARM中数值梯度的误差估计以O(H(R))的超级度验收顺序(1.5 <= R <= 2),当由分段线性多项式组成的最低次次弱Galerkin有限元件时采用元件的内部和元素面上的分段常数。示出了一系列数值实验,以确认三维成熟的超级度验证理论。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号