首页> 外文期刊>Computers & mathematics with applications >Direct meshless local Petrov-Galerkin (DMLPG) method for time-fractional fourth-order reaction-diffusion problem on complex domains
【24h】

Direct meshless local Petrov-Galerkin (DMLPG) method for time-fractional fourth-order reaction-diffusion problem on complex domains

机译:复杂域时间分数阶四阶反应扩散问题的直接无网格局部Petrov-Galerkin(DMLPG)方法

获取原文
获取原文并翻译 | 示例

摘要

A new numerical scheme has been developed based on the fast and efficient meshless local weak form i.e direct meshless local Petrov-Galerkin (DMLPG) method for solving the fractional fourth-order partial differential equation on computational domains with complex shape. The fractional derivative is the Riemann-Liouville fractional derivative. At first, a finite difference scheme with the second-order accuracy has been employed to discrete the time variable. Then, the DMLPG technique is employed to achieve a full-discrete scheme. The time-discrete scheme has been studied in terms of unconditional stability and convergence order by the energy method in the L-2 space. Also, some numerical results are presented to show the efficiency and accuracy of the proposed technique on the simple and complex domains with the irregular and non-regular grid points. (C) 2019 Elsevier Ltd. All rights reserved.
机译:基于快速有效的无网格局部弱形式,即直接无网格局部Petrov-Galerkin(DMLPG)方法,开发了一种新的数值方案,用于求解形状复杂的计算域上的分数阶四阶偏微分方程。分数导数是黎曼-利维尔分数分数。首先,采用具有二阶精度的有限差分方案来离散时间变量。然后,采用DMLPG技术来实现全离散方案。利用L-2空间中的能量方法,研究了无时限稳定性和收敛阶的时离散方案。此外,一些数值结果表明了该技术在具有不规则和不规则网格点的简单和复杂域上的效率和准确性。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号