首页> 外文期刊>Computers & mathematics with applications >Unconditional superconvergence analysis of a linearized Crank-Nicolson Galerkin FEM for generalized Ginzburg-Landau equation
【24h】

Unconditional superconvergence analysis of a linearized Crank-Nicolson Galerkin FEM for generalized Ginzburg-Landau equation

机译:广义Ginzburg-Landau方程的线性Crank-Nicolson Galerkin有限元的无条件超收敛分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study an effective numerical method for the generalized Ginzburg-Landau equation (GLE). Based on the linearized Crank-Nicolson difference method in time and the standard Galerkin finite element method with bilinear element in space, the time-discrete and space-time discrete systems are both constructed. We focus on a rigorous analysis and consideration of unconditional superconvergence error estimates of the discrete schemes. Firstly, by virtue of the temporal error results, the regularity for the time-discrete system is presented. Secondly, the classical Ritz projection is used to obtain the spatial error with order O(h(2)) in the sense of L-2-norm. Thanks to the relationship between the Ritz projection and the interpolated projection, the superclose estimate with order O( tau + h(2)) in the sense of H-1-norm is derived. Thirdly, it follows from the interpolated postprocessing technique that the global superconvergence result is deduced. Finally, some numerical results are provided to confirm the theoretical analysis. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在本文中,我们研究了一种适用于广义Ginzburg-Landau方程(GLE)的有效数值方法。基于时间线性化的Crank-Nicolson差分方法和空间中具有双线性元素的标准Galerkin有限元方法,分别构建了时离散和时空离散系统。我们专注于对离散方案的无条件超收敛误差估计进行严格的分析和考虑。首先,根据时间误差的结果,给出了时间离散系统的规律性。其次,在L-2-范数的意义上,使用经典的Ritz投影获得阶数为O(h(2))的空间误差。由于Ritz投影和插值投影之间的关系,可以得出H-1-范数为O(tau + h(2))阶的超闭合估计。第三,从插值后处理技术推论得出了全局超收敛结果。最后,提供一些数值结果以证实理论分析。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号