首页> 外文期刊>Computers & mathematics with applications >POD-Galerkin reduced order methods for combined Navier-Stokes transport equations based on a hybrid FV-FE solver
【24h】

POD-Galerkin reduced order methods for combined Navier-Stokes transport equations based on a hybrid FV-FE solver

机译:基于混合FV-FE求解器的组合Navier-Stokes输运方程的POD-Galerkin降阶方法

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this work is to introduce a novel POD-Galerkin strategy for the semi-implicit hybrid high order finite volume/finite element solver introduced in Bermudez et al. (2014) and Busto et al. (2018). The interest is into the incompressible Navier-Stokes equations coupled with an additional transport equation. The full order model employed in this article makes use of staggered meshes. This feature will be conveyed to the reduced order model leading to the definition of reduced basis spaces in both meshes. The reduced order model presented herein accounts for velocity, pressure, and a transport-related variable. The pressure term at both the full order and the reduced order level is reconstructed making use of a projection method. More precisely, a Poisson equation for pressure is considered within the reduced order model. Results are verified against three-dimensional manufactured test cases. Moreover a modified version of the classical cavity test benchmark including the transport of a species is analysed. (C) 2019 Elsevier Ltd. All rights reserved.
机译:这项工作的目的是为Bermudez等人介绍的半隐式混合高阶有限体积/有限元求解器引入一种新颖的POD-Galerkin策略。 (2014)和Busto等人。 (2018)。感兴趣的是不可压缩的Navier-Stokes方程与附加的输运方程。本文采用的全序模型利用了交错网格。此功能将传达给降阶模型,从而在两个网格中定义了缩减的基础空间。本文介绍的降序模型考虑了速度,压力和运输相关变量。利用投影方法重建全阶和降阶阶的压力项。更准确地说,在降阶模型中考虑了压力的泊松方程。针对三维制造的测试用例验证了结果。此外,还分析了经典腔测试基准的修改版本,其中包括物种的运输。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Computers & mathematics with applications》 |2020年第2期|256-273|共18页
  • 作者

  • 作者单位

    Univ Trento Dept Civil Environm & Mech Engn Unita INdAM I-38100 Trento Italy;

    Scuola Int Super Studi Avanzati SISSA Math Area Mathlab I-34136 Trieste Italy;

    Univ Santiago Compostela Dept Matemat Aplicada Santiago De Compostela 15782 Spain;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号