首页> 外文期刊>Computers & mathematics with applications >Numerical analysis of degenerate Kolmogorov equations of constrained stochastic Hamiltonian systems
【24h】

Numerical analysis of degenerate Kolmogorov equations of constrained stochastic Hamiltonian systems

机译:约束随机哈密顿系统的简并Kolmogorov方程的数值分析

获取原文
获取原文并翻译 | 示例

摘要

In this work, we propose a method to compute numerical approximations of the invariant measures and Rice's formula (frequency of threshold crossings) for a certain type of stochastic Hamiltonian system constrained by an obstacle and subjected to white or colored noise. As an alternative to probabilistic Monte-Carlo simulations, our approach relies on solving a class of degenerate partial differential equations with non-local Dirichlet boundary conditions, as derived in Mertz et al. (2018). A functional analysis framework is presented; regularization and approximation by the finite element method is applied; numerical experiments on these are performed and show good agreement with probabilistic simulations. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在这项工作中,我们提出了一种方法,用于计算受障碍约束并受到白色或彩色噪声影响的某种类型的随机哈密顿系统的不变测度和莱斯公式(阈值穿越频率)的数值近似。作为概率蒙特卡罗模拟的替代方法,我们的方法依赖于求解一类具有非局部Dirichlet边界条件的退化的偏微分方程,如Mertz等人所述。 (2018)。提出了功能分析框架;应用有限元方法进行正则化和逼近;对此进行了数值实验,并与概率模拟显示出良好的一致性。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号