首页> 外文期刊>Computers & mathematics with applications >A fourth-order optimal finite difference scheme for the Helmholtz equation with PML
【24h】

A fourth-order optimal finite difference scheme for the Helmholtz equation with PML

机译:具有PML的Helmholtz方程的四阶最佳有限差分格式

获取原文
获取原文并翻译 | 示例

摘要

In this paper, 17-point and 25-point finite difference (FD) schemes for the Helmholtz equation with perfectly matched layer (PML) in the two-dimensional domain are presented. It is shown that the 17-point FD scheme is inconsistent in the presence of PML; however, the 25-point FD scheme is pointwise consistent. An error analysis for the numerical approximation of the exact wavenumber is also presented. We present the global and refined 25-point finite difference schemes based on minimizing the numerical dispersion. Numerical experiments are given to illustrate the improvement of the accuracy and the reduction of the numerical dispersion. (C) 2019 Elsevier Ltd. All rights reserved.
机译:本文针对二维域中具有完美匹配层(PML)的Helmholtz方程,提出了17点和25点有限差分(FD)方案。结果表明,在存在PML的情况下,17点FD方案不一致。但是,25点FD方案是逐点一致的。还给出了精确波数数值近似的误差分析。在最小化数值离散的基础上,我们提出了全局的和改进的25点有限差分方案。数值实验说明了精度的提高和数值色散的减小。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号