首页> 外文期刊>Computers & mathematics with applications >Preconditioned WENO finite-difference lattice Boltzmann method for simulation of incompressible turbulent flows
【24h】

Preconditioned WENO finite-difference lattice Boltzmann method for simulation of incompressible turbulent flows

机译:预处理WENO有限差分格子Boltzmann方法模拟不可压缩湍流

获取原文
获取原文并翻译 | 示例

摘要

In this work, a preconditioned high-order weighted essentially non-oscillatory (WENO) finite-difference lattice Boltzmann method (WENO-LBM) is applied to deal with the incompressible turbulent flows. Two different turbulence models namely, the Spalart-Allmaras (SA) and k - omega SST models are used and applied in the solution method for this aim. The spatial derivatives of the two-dimensional (2D) preconditioned LB equation in the generalized curvilinear coordinates are discretized by using the fifth-order WENO finite difference scheme and an implicit-explicit Runge-Kutta scheme is adopted for the time discretization. For the convective and diffusive terms of the turbulence transport equations, the third-order WENO and second-order central finite-difference schemes are used, respectively. The preconditioning technique along with the local time-stepping method are applied to the WENO-LBM to further accelerate the solution to the converged steady-state condition, and therefore, an accurate and efficient incompressible LB solver is provided for simulating turbulent flows. The accuracy and robustness of the proposed solution method are assessed by computing two test cases: the 2D turbulent flow over a flat plate at Re = 1.0 x 10(7) and the 2D turbulent flow over a NACA0012 airfoil at Re = 6.0 x 10(6) and different angles of attack. The present results are compared with the available numerical and experimental results which show excellent agreement. It is demonstrated that the present solution methodology based on the WENO-LBM provides more accurate results of the incompressible turbulent flows and it requires lower number of grid points compared to the traditional (low-order accurate) LB and Navier-Stokes solvers. (C) 2018 Elsevier Ltd. All rights reserved.
机译:在这项工作中,预处理的高阶加权基本非振荡(WENO)有限差分格子玻尔兹曼方法(WENO-LBM)用于处理不可压缩的湍流。为此,使用了两种不同的湍流模型,即Spalart-Allmaras(SA)模型和k-omega SST模型,并将其应用于求解方法中。使用五阶WENO有限差分方案离散二维(2D)预处理LB方程在广义曲线坐标系中的空间导数,并采用隐式显式Runge-Kutta方案进行时间离散。对于湍流输运方程的对流和扩散项,分别使用了三阶WENO和二阶中心有限差分格式。预处理技术与局部时间步长方法一起应用于WENO-LBM,以进一步加速求解收敛的稳态条件,因此,提供了一种精确高效的不可压缩LB解算器来模拟湍流。通过计算两个测试案例来评估所提出的求解方法的准确性和鲁棒性:在Re = 1.0 x 10(7)时通过平板的2D湍流和在Re = 6.0 x 10(7)时通过NACA0012机翼的2D湍流6)和不同的攻角。目前的结果与现有的数值和实验结果进行了比较,两者显示出极好的一致性。结果表明,基于WENO-LBM的当前解决方案方法可提供更精确的不可压缩湍流结果,并且与传统的(低阶准确度)LB和Navier-Stokes求解器相比,它需要的网格点数更少。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号