首页> 外文期刊>Computers & mathematics with applications >Middle-long power load forecasting based on particle swarm optimization
【24h】

Middle-long power load forecasting based on particle swarm optimization

机译:基于粒子群算法的中长期电力负荷预测

获取原文
获取原文并翻译 | 示例

摘要

Middle-long forecasting of electric power load is crucial to electric investment, which is the guarantee of the healthy development of electric industry. In this paper, the particle swarm optimization (PSO) is used as a training algorithm to obtain the weights of the single forecasting method to form the combined forecasting method. Firstly, several forecasting methods are used to do middle-long power load forecasting. Then the upper forecasting methods are measured by several indices and the entropy method is used to form a comprehensive forecasting method evaluation index, following which the PSO is used to attain a combined forecasting method (PSOCF) with the best objective function value. We then obtain the final result by adding all the results of every single forecasting method. Taking actual load data of a power grid company in North China as a sample, the results show that PSOCF model improves the forecasting precision compared to the traditional models.
机译:中长期的电力负荷预测对电力投资至关重要,这是电力工业健康发展的保证。本文采用粒子群算法(PSO)作为训练算法,获得单一预测方法的权重,形成组合预测方法。首先,采用几种预测方法进行中长期电力负荷预测。然后,通过几个指标对较高的预测方法进行测量,并使用熵值法形成一个综合的预测方法评估指标,然后使用PSO来获得具有最佳目标函数值的组合预测方法(PSOCF)。然后,我们通过将每种预测方法的所有结果相加来获得最终结果。以华北某电网公司的实际负荷数据为样本,结果表明,PSOCF模型与传统模型相比提高了预测精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号