首页> 外文期刊>Computers & mathematics with applications >Accurate analytical solutions to oscillators with discontinuities and fractional-power restoring force by means of the optimal homotopy asymptotic method
【24h】

Accurate analytical solutions to oscillators with discontinuities and fractional-power restoring force by means of the optimal homotopy asymptotic method

机译:最优同伦渐近方法对具有不连续性和分数功率恢复力的振荡器的精确解析解

获取原文
获取原文并翻译 | 示例

摘要

In this paper a new approach combining the features of the homotopy concept with an efficient computational algorithm which provides a simple and rigorous procedure to control the convergence of the solution is proposed to find accurate analytical explicit solutions for some oscillators with discontinuities and a fractional power restoring force which is proportional to sign(x). A very fast convergence to the exact solution was proved, since the second-order approximation lead to very accurate results. Comparisons with numerical results are presented to show the effectiveness of this method. Four numerical applications prove the accuracy of the method, which works very well for the whole range of initial amplitudes. The obtained results prove the validity and efficiency of the method, which can be easily extended to other strongly nonlinear problems.
机译:在本文中,提出了一种新方法,该方法将同伦概念的特征与有效的计算算法相结合,该算法提供了一种简单而严格的过程来控制解的收敛,从而为具有不连续性和分数次幂恢复的某些振荡器找到了精确的解析显式解。与符号(x)成正比的力。由于二阶近似导致非常精确的结果,因此证明了对精确解的非常快速的收敛。与数值结果进行了比较,以证明该方法的有效性。四个数值应用证明了该方法的准确性,该方法在整个初始振幅范围内都非常有效。所得结果证明了该方法的有效性和有效性,可以很容易地扩展到其他强非线性问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号