首页> 外文期刊>Computers & mathematics with applications >Short-term scheduling of cascade reservoirs using an immune algorithm-based particle swarm optimization
【24h】

Short-term scheduling of cascade reservoirs using an immune algorithm-based particle swarm optimization

机译:基于免疫算法的粒子群算法在梯级水库短期调度中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new approach for short-term hydropower scheduling of reservoirs using an immune algorithm-based particle swarm optimization (IA-PSO). IA-PSO is employed by coupling the immune information processing mechanism with the particle swarm optimization algorithm in order to achieve a better global solution with less computational effort. With the IA-PSO technique, the hydro-electrical optimization model of reservoirs is formulated as a high-dimensional, dynamic, nonlinear and stochastic global optimization problem of a multi-reservoir hydropower system. The purpose of the proposed methodology is to maximize total hydropower production. Here it is applied to a reservoir system on the Qingjiang River, in the Yangtze watershed, that consists of two reservoirs. The results are compared with the results obtained through conventional operation method, the dynamic programming and the standard PSO algorithm. From the comparative results, it is found that the IA-PSO approach provides the most globally optimum solution at a faster convergence speed.
机译:本文提出了一种基于免疫算法的粒子群优化算法(IA-PSO)的水库短期水电调度新方法。通过将免疫信息处理机制与粒子群优化算法结合使用IA-PSO,从而以较少的计算量获得更好的全局解决方案。利用IA-PSO技术,将水库水电优化模型表述为多水库水电系统的高维,动态,非线性和随机全局优化问题。拟议方法的目的是使水力发电的总产量最大化。在这里,它应用于长江流域的清江水库系统,该系统由两个水库组成。将结果与通过常规操作方法,动态编程和标准PSO算法获得的结果进行比较。从比较结果可以发现,IA-PSO方法以更快的收敛速度提供了最全局的最佳解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号